Cisco ASR 5000 Series 3G Home NodeB Administration Manual page 21

3g home nodeb gateway
Table of Contents

Advertisement

HNB Gateway in Wireless Network
This is the interface used by the HNB-GW to communicate with HNB on the same Femtocell Access Network.
This interface serves as path for establishing and maintaining subscriber UE contexts.
One or more IuH interfaces can be configured per system context.
 IuCS: This interface is the reference point in UMTS which links the HNB-GW, which acts as an RNC (Radio
Network Controller), with a Mobile Switching Centre (3G MSC) in the 3G UMTS Femtocell Access Network.
This interface provides an IuCS over IP or IuCS over ATM (IP over AAL5 over ATM) interface between the
MSC and the RNC (HNB-GW) in the 3G UMTS Femtocell Access Network. RAN Application Part (RANAP)
is the control protocol that sets up the data plane (GTP-U) between these nodes. SIGTRAN (M3UA/SCTP) or
QSAAL (MTP3B/QSAAL) handle IuCS (control) for the HNB-GW.
This is the interface used by the HNB-GW to communicate with 3G MSC on the same Public Land Mobile
Network (PLMN). This interface serves as path for establishing and maintaining the CS access for Femtocell
UE to circuit switched UMTS core networks
One or more IuCS interfaces can be configured per system context.
 IuPS: This interface is the reference point between HNB-GW and SGSN. This interface provides an IuPS over
IP or IuPS over ATM (IP over AAL5 over ATM) interface between the SGSN and the RNC (HNB-GW) in the
3G UMTS Femtocell Access Network. RAN Application Part (RANAP) is the control protocol that sets up the
data plane (GTP-U) between these nodes. SIGTRAN (M3UA/SCTP) or QSAAL (MTP3B/QSAAL) handle
IuPS-C (control) for the HNB-GW.
This is the interface used by the HNB-GW to communicate with SGSN on the same Public Land Mobile
Network (PLMN). This interface serves as path for establishing and maintaining the PS access for Femtocell
UE to packet switched UMTS core networks.
One or more IuPS interfaces can be configured per system context.
 Gi: This interface is the reference point between HNB-GW and IP Offload Gateway. It is used by the HNB-GW
to communicate with Packet Data Networks (PDNs) through IP Offload Gateway in the H-PLMN/V-PLMN.
Examples of PDNs are the Internet or corporate intranets.
One or more Gi interfaces can be configured per system context.
 Gn: This interface is the reference point between HNB-GW and GGSN. It is used by the HNB-GW to
communicate with GGSNs on the same GPRS/UMTS Public Land Mobile Network (PLMN).
One or more Gn interfaces can be configured per system context.
 RADIUS: This interface is the reference point between a Security Gateway (SeGW) and a 3GPP AAA Server or
3GPP AAA proxy (OCS/CGF/AAA/HSS) over RADIUS protocol for AAA procedures for Femto user.
In the roaming case, the 3GPP AAA Proxy can act as a stateful proxy between the SeGW and 3GPP AAA
Server.
The AAA server is responsible for transfer of subscription and authentication data for
authenticating/authorizing user access and UE authentication. The SeGW communicates with the AAA on the
PLMN using RADIUS protocol.
One or more RADIUS interfaces can be configured per system context.
 TR-069: This interface is an application layer protocol which is used for remote configuration of terminal
devices, such as DSL modems, HNBs and STBs. TR-069 provides an auto configuration mechanism between
the HNB and a remote node in the service provider network termed the Auto Configuration Server. The
standard also uses a combination of security measures including IKEv2 (Internet Key Exchange v2) and IPsec
(IP Security) protocols to authenticate the operator and subscriber and then guarantee the privacy of the data
exchanged.
One TR-069 interface can be configured per HNB node.
OL-25069-03
Cisco ASR 5000 Series 3G Home NodeB Gateway Administration Guide ▄
Network Deployment and Interfaces ▀
21

Advertisement

Table of Contents
loading

This manual is also suitable for:

Asr 5000 series

Table of Contents