Dell Z9000 Configuration Manual

Dell Z9000 Configuration Manual

10/25/40/50/100gbe throughput
Hide thumbs Also See for Z9000:
Table of Contents

Advertisement

Quick Links

Dell Configuration Guide for the Z9000
System
9.7(0.0)

Advertisement

Table of Contents
loading

Summary of Contents for Dell Z9000

  • Page 1 Dell Configuration Guide for the Z9000 System 9.7(0.0)
  • Page 2 WARNING: A WARNING indicates a potential for property damage, personal injury, or death. Copyright © 2015 Dell Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. Dell and the Dell logo are trademarks of Dell Inc.
  • Page 3: Table Of Contents

    Contents 1 About this Guide....................31 .............................. 31 Audience ............................31 Conventions ..........................31 Related Documents 2 Configuration Fundamentals................32 ......................32 Accessing the Command Line ............................32 CLI Modes ........................34 Navigating CLI Modes ..........................37 The do Command ...........................38 Undoing Commands ............................ 39 Obtaining Help .......................
  • Page 4 Configuring Login Authentication for Terminal Lines ..................72 Setting Time Out of EXEC Privilege Mode ................73 Using Telnet to get to Another Network Device ......................74 Lock CONFIGURATION Mode ..................74 Viewing the Configuration Lock Status ............75 Recovering from a Forgotten Password on the Z9000 System...
  • Page 5 ..........76 Recovering from a Forgotten Enable Password on the Z9000 ............... 77 Recovering from a Failed Start on the Z9000 System ....................78 Restoring the Factory Default Settings ....................78 Important Points to Remember ............... 78 Restoring Factory Default Environment Variables 5 802.1X........................
  • Page 6 ............................109 IP Prefix Lists ...................... 109 Implementation Information ..................109 Configuration Task List for Prefix Lists ..........................113 ACL Resequencing .................... 114 Resequencing an ACL or Prefix List ............................115 Route Maps .......................116 Implementation Information ......................116 Important Points to Remember ..................116 Configuration Task List for Route Maps ......................
  • Page 7 ............................176 AS Path ............................176 Next Hop ..........................177 Multiprotocol BGP ..................177 Implement BGP with Dell Networking OS ....................177 Additional Path (Add-Path) Support ..............177 Advertise IGP Cost as MED for Redistributed Routes ..............178 Ignore Router-ID for Some Best-Path Calculations ........................178...
  • Page 8 ....................200 Regular Expressions as Filters ........................201 Redistributing Routes ......................202 Enabling Additional Paths ....................202 Configuring IP Community Lists ................204 Configuring an IP Extended Community List ..................205 Filtering Routes with Community Lists .................. 205 Manipulating the COMMUNITY Attribute ......................
  • Page 9 ....................238 Configure Control Plane Policing ....................239 Configuring CoPP for Protocols ................... 241 Configuring CoPP for CPU Queues ......................242 CoPP for OSPFv3 Packets ....................245 Configuring CoPP for OSPFv3 ........................246 Show Commands 12 Dynamic Host Configuration Protocol (DHCP)........248 ....................248 DHCP Packet Format and Options ....................
  • Page 10 ..................271 Configuring the Hash Algorithm Seed ........................271 Link Bundle Monitoring ....................272 Managing ECMP Group Paths ....................272 Creating an ECMP Group Bundle ..................273 Modifying the ECMP Group Threshold 14 Enabling FIPS Cryptography................ 274 .......................... 274 Configuration Tasks ........................274 Preparing the System ..........................
  • Page 11 17 Internet Group Management Protocol (IGMP).........294 ....................294 IGMP Implementation Information ........................294 IGMP Protocol Overview ..........................294 IGMP Version 2 ..........................296 IGMP Version 3 ..........................299 Configure IGMP ...................... 299 Related Configuration Tasks ....................300 Viewing IGMP Enabled Interfaces .......................300 Selecting an IGMP Version ........................301 Viewing IGMP Groups ..........................301...
  • Page 12 ......................319 Enabling a Physical Interface ..........................319 Physical Interfaces ................320 Configuration Task List for Physical Interfaces ......................320 Overview of Layer Modes ..................320 Configuring Layer 2 (Data Link) Mode ..................321 Configuring Layer 2 (Interface) Mode ..................321 Configuring Layer 3 (Network) Mode ..................
  • Page 13 ............340 Converting a QSFP or QSFP+ Port to an SFP or SFP+ Port ....................341 Important Points to Remember ......................342 Support for LM4 Optics ........................342 Example Scenarios ..........................346 Link Dampening ....................346 Important Points to Remember ......................346 Enabling Link Dampening ........................
  • Page 14 IPv6 Headers ........................381 IPv6 Header Fields ......................382 Extension Header Fields ........................... 383 Addressing ..................385 Implementing IPv6 with Dell Networking OS .............................. 387 ICMPv6 ..........................387 Path MTU Discovery ........................388 IPv6 Neighbor Discovery ................. 389 IPv6 Neighbor Discovery of MTU Packets ..................
  • Page 15 ................. 393 Assigning an IPv6 Address to an Interface ..................... 393 Assigning a Static IPv6 Route ......................394 Configuring Telnet with IPv6 ...........................394 SNMP over IPv6 ......................394 Showing IPv6 Information ......................395 Showing an IPv6 Interface ........................396 Showing IPv6 Routes ..............
  • Page 16 ..........................428 LACP Modes ....................428 Configuring LACP Commands ........................429 LACP Configuration Tasks ..........................429 Creating a LAG ................430 Configuring the LAG Interfaces as Dynamic ....................430 Setting the LACP Long Timeout ....................431 Monitoring and Debugging LACP ....................... 431 Shared LAG State Tracking ..................
  • Page 17 ......................... 461 802.1AB (LLDP) Overview ........................461 Protocol Data Units ............................462 Optional TLVs ........................462 Management TLVs ......................464 TIA-1057 (LLDP-MED) Overview .....................465 TIA Organizationally Specific TLVs ..........................469 Configure LLDP ...................... 469 Related Configuration Tasks ....................470 Important Points to Remember ........................
  • Page 18 Adding and Removing Interfaces ..................515 Creating Multiple Spanning Tree Instances ..................... 517 Influencing MSTP Root Selection ............... 517 Interoperate with Non-Dell Networking OS Bridges ..................518 Changing the Region Name or Revision ......................518 Modifying Global Parameters ....................519 Modifying the Interface Parameters ........................520...
  • Page 19 ................554 Designated and Backup Designated Routers ....................554 Link-State Advertisements (LSAs) ......................556 Router Priority and Cost ......................556 OSPF with Dell Networking OS ...........................557 Graceful Restart ..................558 Fast Convergence (OSPFv2, IPv4 Only) ....................558 Multi-Process OSPFv2 (IPv4 only) ..................
  • Page 20 OSPFv3 Authentication Using IPsec ......................590 Troubleshooting OSPFv3 32 Policy-based Routing (PBR)................. 592 ............................592 Overview ............. 594 Implementing Policy-based Routing with Dell Networking OS ................594 Configuration Task List for Policy-based Routing ......................597 PBR Exceptions (Permit) ........................600 Sample Configuration Create the Redirect-List GOLDAssign Redirect-List GOLD to Interface 2/11View ........................601...
  • Page 21 Configuring the Encapsulated Remote Port Mirroring ........... 628 Changes to Default BehaviorConfiguration steps for ERPM ................630 ERPM Behavior on a typical Dell Networking OS ..........630 Decapsulation of ERPM packets at the Destination IP/ Analyzer 36 Private VLANs (PVLAN)..................632 ........................632 Private VLAN Concepts ....................633...
  • Page 22 ....................649 PVST+ in Multi-Vendor Networks ....................649 Enabling PVST+ Extend System ID ......................650 PVST+ Sample Configurations 38 Quality of Service (QoS)................652 ......................654 Implementation Information ...................... 654 Port-Based QoS Configurations ................655 Setting dot1p Priorities for Incoming Traffic ................655 Honoring dot1p Priorities on Ingress Traffic ..................656 Configuring Port-Based Rate Policing ..................
  • Page 23 40 Remote Monitoring (RMON)................697 ......................697 Implementation Information ...........................697 Fault Recovery ......................698 Setting the rmon Alarm ......................699 Configuring an RMON Event ................... 700 Configuring RMON Collection Statistics ................700 Configuring the RMON Collection History 41 Rapid Spanning Tree Protocol (RSTP)............702 ..........................
  • Page 24 Creating Access and Trunk Ports ....................757 Enable VLAN-Stacking for a VLAN ..........757 Configuring the Protocol Type Value for the Outer VLAN Tag ............757 Configuring Dell Networking OS Options for Trunk Ports ......................758 Debugging VLAN Stacking ................. 759 VLAN Stacking in Multi-Vendor Networks ..................762 VLAN Stacking Packet Drop Precedence ......................
  • Page 25 ..................769 Enabling Layer 2 Protocol Tunneling ..............769 Specifying a Destination MAC Address for BPDUs ......................769 Setting Rate-Limit BPDUs ..................770 Debugging Layer 2 Protocol Tunneling ......................770 Provider Backbone Bridging 45 sFlow......................... 771 ............................771 Overview ......................771 Implementation Information ....................
  • Page 26 ............793 Copying the Startup-Config Files to the Running-Config ............793 Copying the Startup-Config Files to the Server via FTP ............794 Copying the Startup-Config Files to the Server via TFTP ............... 794 Copy a Binary File to the Startup-Configuration .................795 Additional MIB Objects to View Copy Statistics .....................
  • Page 27 Disabling NTP on an Interface ..............826 Configuring a Source IP Address for NTP Packets ....................826 Configuring NTP Authentication ....................830 Dell Networking OS Time and Date ......................830 Configuration Task List ............830 Setting the Time and Date for the Switch Software Clock ......................... 830 Setting the Timezone ......................831...
  • Page 28 ....................843 Assigning Interfaces to a VLAN ...................... 845 Moving Untagged Interfaces .................... 846 Assigning an IP Address to a VLAN ........................846 Configuring Native VLANs ..................847 Enabling Null VLAN as the Default VLAN 53 Virtual Link Trunking (VLT)................848 ............................
  • Page 29 ..............888 PVLAN Operations When One VLT Peer is Down ..............889 PVLAN Operations When a VLT Peer is Restarted ...........889 Interoperation of VLT Nodes in a PVLAN with ARP Requests ..889 Scenarios for VLAN Membership and MAC Synchronization With VLT Nodes in PVLAN ..................891 Configuring a VLT VLAN or LAG in a PVLAN ....................
  • Page 30 ......................940 Hardware Watchdog Timer ......................940 show hardware Commands ....................... 943 Environmental Monitoring ..............................943 ................943 Recognize an Over-Temperature Condition ............... 944 Troubleshoot an Over-Temperature Condition ................... 944 Recognize an Under-Voltage Condition ................944 Troubleshoot an Under-Voltage Condition ............................ 945 Buffer Tuning ........................
  • Page 31: About This Guide

    About this Guide This guide describes the protocols and features the Dell Networking Operating System (OS) supports and provides configuration instructions and examples for implementing them. The Z9000 platform is available with Dell Networking OS version 8.3.11.1 and beyond. Though this guide contains information on protocols, it is not intended to be a complete reference. This guide is a reference for configuring protocols on Dell Networking systems.
  • Page 32: Configuration Fundamentals

    In Dell Networking OS, after you enable a command, it is entered into the running configuration file. You can view the current configuration for the whole system or for a particular CLI mode. To save the current configuration, copy the running configuration to another location.
  • Page 33 • EXEC mode is the default mode and has a privilege level of 1, which is the most restricted level. Only a limited selection of commands is available, notably the show commands, which allow you to view system information. • EXEC Privilege mode has commands to view configurations, clear counters, manage configuration files, run diagnostics, and enable or disable debug operations.
  • Page 34: Navigating Cli Modes

    GRUB Navigating CLI Modes The Dell Networking OS prompt changes to indicate the CLI mode. The following table lists the CLI mode, its prompt, and information about how to access and exit the CLI mode. Move linearly through the command modes, except for the end command which takes you directly to EXEC Privilege mode and the exit command which moves you up one command mode level.
  • Page 35 CLI Command Mode Prompt Access Command NOTE: Access all of the following modes from CONFIGURATION mode. AS-PATH ACL Dell(config-as-path)# ip as-path access-list Gigabit Ethernet Interface interface (INTERFACE modes) Dell(conf-if-gi-1/1)# 10 Gigabit Ethernet Interface interface (INTERFACE modes) Dell(conf-if-te-0/0)# 40 Gigabit Ethernet Interface...
  • Page 36 ECMP Dell(conf-ecmp-group- ecmp-group ecmp-group-id)# Dell(conf-mgmt-eis)# management egress- interface-selection FRRP Dell(conf-frrp-ring-id)# protocol frrp LLDP Dell(conf-lldp)# or protocol lldp (CONFIGURATION or INTERFACE Dell(conf-if—interface- Modes) lldp)# LLDP MANAGEMENT INTERFACE Dell(conf-lldp-mgmtIf)# management-interface (LLDP Mode) LINE line console orline vty Dell(config-line-console) or Dell(config-line-vty) Configuration Fundamentals...
  • Page 37: The Do Command

    INTERFACE, SPANNING TREE, and so on.) without having to return to EXEC mode by preceding the EXEC mode command with the do command. The following example shows the output of the do command. Dell(conf)#do show system brief Stack MAC : 00:01:e8:00:66:64 Reload-Type...
  • Page 38: Undoing Commands

    For example, to delete an IP address configured on an interface, use the no ip address ip-address command. NOTE: Use the help or ? command as described in Obtaining Help. Example of Viewing Disabled Commands Dell(conf)#interface tengigabitethernet 4/17 Dell(conf-if-te-4/17)#ip address 192.168.10.1/24 Dell(conf-if-te-4/17)#show config interface TenGigabitEthernet 4/17 ip address 192.168.10.1/24 no shutdown...
  • Page 39: Obtaining Help

    Enter ? after a partial keyword lists all of the keywords that begin with the specified letters. Dell(conf)#cl? class-map clock Dell(conf)#cl • Enter [space]? after a keyword lists all of the keywords that can follow the specified keyword. Dell(conf)#clock ? summer-time Configure summer (daylight savings) time timezone Configure time zone Dell(conf)#clock Entering and Editing Commands Notes for entering commands.
  • Page 40: Command History

    Deletes all characters from the cursor to the end of the word. Command History Dell Networking OS maintains a history of previously-entered commands for each mode. For example: • When you are in EXEC mode, the UP and DOWN arrow keys display the previously-entered EXEC mode commands.
  • Page 41 Dell(conf)#do show system brief | grep 0 not present NOTE: Dell Networking OS accepts a space or no space before and after the pipe. To filter a phrase with spaces, underscores, or ranges, enclose the phrase with double quotation marks.
  • Page 42: Multiple Users In Configuration Mode

    Multiple Users in Configuration Mode Dell Networking OS notifies all users when there are multiple users logged in to CONFIGURATION mode. A warning message indicates the username, type of connection (console or VTY), and in the case of a VTY connection, the IP address of the terminal on which the connection was established.
  • Page 43: Getting Started

    When you power up the chassis, the system performs a power-on self test (POST) during which the line card status light emitting diodes (LEDs) blink green. The system then loads the Dell Networking Operating System (OS). Boot messages scroll up the terminal window during this process. No user interaction is required if the boot process proceeds without interruption.
  • Page 44: Accessing The Cli Interface And Running Scripts Using Ssh

    SSH for secure, protected communication with the device. You can open an SSH session and run commands or script files. This method of connectivity is supported with S4810, S4048–ON, S3048–ON, S4820T, and Z9000 switches and provides a reliable, safe communication mechanism. Getting Started...
  • Page 45: Entering Cli Commands Using An Ssh Connection

    Entering CLI commands Using an SSH Connection You can run CLI commands by entering any one of the following syntax to connect to a switch using the preconfigured user credentials using SSH: ssh username@hostname <CLI Command> echo <CLI Command> | ssh admin@hostname The SSH server transmits the terminal commands to the CLI shell and the results are displayed on the screen non-interactively.
  • Page 46: Default Configuration

    A version of Dell Networking OS is pre-loaded onto the chassis; however, the system is not configured when you power up for the first time (except for the default hostname, which is Dell). You must configure the system using the CLI.
  • Page 47: Configure A Management Route

    0 is for inputting the password in clear text. 7 is for inputting a password that is already encrypted using a Type 7 hash. Obtaining the encrypted password from the configuration of another Dell Networking system. Configuring the Enable Password Access EXEC Privilege mode using the enable command.
  • Page 48: Configuration File Management

    To copy a local file to a remote system, combine the file-origin syntax for a local file location with the file-destination syntax for a remote file location. • To copy a remote file to Dell Networking system, combine the file-origin syntax for a remote file location with the file-destination syntax for a local file location. Table 3. Forming a...
  • Page 49: Mounting An Nfs File System

    27952672 bytes successfully copied Example of Importing a File to the Local System core1#$//copy ftp://myusername:mypassword@10.10.10.10//Dell/ Dell-EF-8.2.1.0.bin flash:// Destination file name [Dell-EF-8.2.1.0.bin.bin]: !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 26292881 bytes successfully copied Mounting an NFS File System This feature enables you to quickly access data on an NFS mounted file system. You can perform file operations on an NFS mounted file system using supported file commands.
  • Page 50 • The usbflash command is supported on the device. Refer to your system’s Release Notes for a list of approved USB vendors. Example of Copying a File to current File System Dell#copy tftp://10.16.127.35/mashutosh/dv-maa-s4810-test nfsmount:// Destination file name [dv-maa-s4810-test]: !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!.!
  • Page 51: Save The Running-Configuration

    Configure the Overload Bit for a Startup Scenario For information about setting the router overload bit for a specific period of time after a switch reload is implemented, refer to the Intermediate System to Intermediate System (IS-IS) section in the Dell Networking OS Command Line Reference Guide.
  • Page 52 “Startup-config last updated,” you have made changes that have not been saved and are preserved after a system reboot. Example of the show running-config Command Dell#show running-config Current Configuration ... ! Version 9.4(0.0) ! Last configuration change at Tue Mar 11 21:33:56 2014 by admin...
  • Page 53: Managing The File System

    Dell# Managing the File System The Dell Networking system can use the internal Flash, external Flash, or remote devices to store files. The system stores files on the internal Flash by default but can be configured to store files elsewhere.
  • Page 54: Enabling Software Features On Devices Using A Command Option

    This command will be stored in running-configuration and will precede all other VRF-related configurations. NOTE: The MXL and Z9000 platforms currently do not support VRF. These platforms support only the management and default VRFs, which are available by default. As a result, the feature vrf command is not available for these platforms.
  • Page 55: View Command History

    [12/5 10:57:13]: CMD-(CLI):boot system rpm0 primary flash://FTOS- CB-1.1.1.2E2.bin Upgrading Dell Networking OS NOTE: To upgrade Dell Networking Operating System (OS), refer to the Release Notes for the version you want to load on the system. Using HTTP for File Transfers Stating with Release 9.3(0.1), you can use HTTP to copy files or configuration details to a remote server.
  • Page 56 The published hash for that file is displayed next to the software image file on the iSupport page. Go on to the Dell Networking system and copy the software image to the flash drive, using the copy command. Run the verify {md5 | sha256} [ flash://]img-file [hash-value] command. For example, verify sha256 flash://FTOS-SE-9.5.0.0.bin...
  • Page 57: Management

    Management This chapter describes the different protocols or services used to manage the Dell Networking system. Configuring Privilege Levels Privilege levels restrict access to commands based on user or terminal line. There are 16 privilege levels, of which three are pre-defined. The default privilege level is 1.
  • Page 58: Moving A Command From Exec Privilege Mode To Exec Mode

    Moving a Command from EXEC Privilege Mode to EXEC Mode To move a command from EXEC Privilege to EXEC mode for a privilege level, use the privilege exec command from CONFIGURATION mode. In the command, specify the privilege level of the user or terminal line and specify all keywords in the command to which you want to allow access.
  • Page 59 CONFIGURATION mode privilege {configure |interface | line | route-map | router} level level {command ||...|| command} Example of EXEC Privilege Commands Dell(conf)#do show run priv privilege exec level 3 capture privilege exec level 3 configure privilege exec level 4 resequence...
  • Page 60: Applying A Privilege Level To A Username

    NOTE: When you assign a privilege level between 2 and 15, access to the system begins at EXEC mode, but the prompt is hostname#, rather than hostname>. Configuring Logging The Dell Networking OS tracks changes in the system using event and error messages. By default, Dell Networking OS logs these messages on: •...
  • Page 61: Audit And Security Logs

    no logging on • Disable logging to the logging buffer. CONFIGURATION mode no logging buffer • Disable logging to terminal lines. CONFIGURATION mode no logging monitor • Disable console logging. CONFIGURATION mode no logging console Audit and Security Logs This section describes how to configure, display, and clear audit and security logs. The following is the configuration task list for audit and security logs: •...
  • Page 62 For information about the logging extended command, see Enabling Audit and Security Logs Dell#show logging auditlog May 12 12:20:25: Dell#: %CLI-6-logging extended by admin from vty0 (10.14.1.98) May 12 12:20:42: Dell#: %CLI-6-configure terminal by admin from vty0 (10.14.1.98) May 12 12:20:42: Dell#: %CLI-6-service timestamps log datetime by admin from vty0 (10.14.1.98)
  • Page 63: Configuring Logging Format

    • 1 – Displays syslog message format as described in RFC 5424, The SYSLOG Protocol Example of Configuring the Logging Message Format Dell(conf)#logging version ? <0-1> Select syslog version (default = 0) Dell(conf)#logging version 1 Setting Up a Secure Connection to a Syslog Server You can use reverse tunneling with the port forwarding to securely connect to a syslog server.
  • Page 64: Log Messages In The Internal Buffer

    Configure logging to a local host. locahost is “127.0.0.1” or “::1”. If you do not, the system displays an error when you attempt to enable role-based only AAA authorization. Dell(conf)# logging localhost tcp port Dell(conf)#logging 127.0.0.1 tcp 5140 Log Messages in the Internal Buffer All error messages, except those beginning with %BOOTUP (Message), are log in the internal buffer.
  • Page 65: Sending System Messages To A Syslog Server

    • Disable console logging. CONFIGURATION mode no logging console Sending System Messages to a Syslog Server To send system messages to a specified syslog server, use the following command. The following syslog standards are supported: RFC 5424 The SYSLOG Protocol, R.Gerhards and Adiscon GmbH, March 2009, obsoletes RFC 3164 and RFC 5426 Transmission of Syslog Messages over UDP.
  • Page 66: Display The Logging Buffer And The Logging Configuration

    Specify the size of the logging buffer. CONFIGURATION mode logging buffered size NOTE: When you decrease the buffer size, Dell Networking OS deletes all messages stored in the buffer. Increasing the buffer size does not affect messages in the buffer. •...
  • Page 67: Configuring A Unix Logging Facility Level

    %TSM-6-SFM_DISCOVERY: Found SFM 8 %TSM-6-SFM_DISCOVERY: Found 9 SFMs %CHMGR-5-CHECKIN: Checkin from line card 5 (type EX1YB, 1 ports) %TSM-6-PORT_CONFIG: Port link status for LC 5 => portpipe 0: OK portpipe 1: N/A %CHMGR-5-LINECARDUP: Line card 5 is up %CHMGR-5-CHECKIN: Checkin from line card 12 (type S12YC12, 12 ports) %TSM-6-PORT_CONFIG: Port link status for LC 12 =>...
  • Page 68: Synchronizing Log Messages

    Dell# Synchronizing Log Messages You can configure Dell Networking OS to filter and consolidate the system messages for a specific line by synchronizing the message output. Only the messages with a severity at or below the set level appear. This feature works on the terminal and console connections available on the system.
  • Page 69: File Transfer Services

    File Transfer Services With Dell Networking OS, you can configure the system to transfer files over the network using the file transfer protocol (FTP). One FTP application is copying the system image files over an interface on to the system; however, FTP is not supported on virtual local area network (VLAN) interfaces.
  • Page 70: Configuring Ftp Server Parameters

    0 zanzibar Dell# Configuring FTP Server Parameters After you enable the FTP server on the system, you can configure different parameters. To specify the system logging settings, use the following commands. • Specify the directory for users using FTP to reach the system.
  • Page 71: Terminal Lines

    0 access-class myvtyacl Dell Networking OS Behavior: Prior to Dell Networking OS version 7.4.2.0, in order to deny access on a VTY line, apply an ACL and accounting, authentication, and authorization (AAA) to the line. Then users are denied access only after they enter a username and password.
  • Page 72: Setting Time Out Of Exec Privilege Mode

    Dell(config-line-vty)# Setting Time Out of EXEC Privilege Mode EXEC time-out is a basic security feature that returns Dell Networking OS to EXEC mode after a period of inactivity on the terminal lines. To set time out, use the following commands.
  • Page 73: Using Telnet To Get To Another Network Device

    EXEC Privilege telnet [ip-address] If you do not enter an IP address, Dell Networking OS enters a Telnet dialog that prompts you for one. Enter an IPv4 address in dotted decimal format (A.B.C.D). Enter an IPv6 address in the format 0000:0000:0000:0000:0000:0000:0000:0000. Elision of zeros is supported.
  • Page 74: Lock Configuration Mode

    Dell# Lock CONFIGURATION Mode Dell Networking OS allows multiple users to make configurations at the same time. You can lock CONFIGURATION mode so that only one user can be in CONFIGURATION mode at any time (Message You can set two types of lockst: auto and manual.
  • Page 75: Recovering From A Forgotten Password On The Z9000 System

    The Z9000 boots up with the factory default configuration. The default Dell Networking OS system prompt displays when the system boot up is complete. NOTE: Do not press any keys during the boot-up process. Copy the startup-config into the running-config.
  • Page 76: Recovering From A Forgotten Enable Password On The Z9000

    Log onto the system using the console. Power-cycle the chassis by switching off all of the power modules and then switching them back on. Press any key to abort the boot process. You enter grub on the Z9000, as indicated by the grub> prompt.
  • Page 77: Recovering From A Failed Start On The Z9000 System

    Recovering from a Failed Start on the Z9000 System A system that does not start correctly might be attempting to boot from a corrupted Dell Networking OS image or from a mis-specified location. In this case, you can restart the system and interrupt the boot process to point the system to another boot location.
  • Page 78: Restoring The Factory Default Settings

    After the restore is complete, the units power cycle immediately. The following example illustrates the restore factory-defaults command to restore the factory default settings. Dell#restore factory-defaults stack-unit 0 nvram *********************************************************************** Warning - Restoring factory defaults will delete the existing persistent settings (stacking, fanout, etc.) After restoration the unit(s) will be powercycled immediately.
  • Page 79 default boot lines are set to a Null String. If both the partitions contain invalid images, then primary, secondary, and default boot line values are set to a Null string. When you use the Network boot procedure to boot the device, the boot loader checks if the primary partition contains a valid image.
  • Page 80 grub> reboot Management...
  • Page 81 (typically RADIUS) using a mandatory intermediary network access device, in this case, a Dell Networking switch. The network access device mediates all communication between the end-user device and the authentication server so that the network remains secure. The network access device uses EAP-over-Ethernet (EAPOL) to communicate with the end-user device and EAP-over- RADIUS to communicate with the server.
  • Page 82: 802.1X

    It translates and forwards requests and responses between the authentication server and the supplicant. The authenticator also changes the status of the port based on the results of the authentication process. The Dell Networking switch is the authenticator. •...
  • Page 83 The supplicant responds with its identity in an EAP Response Identity frame. The authenticator decapsulates the EAP response from the EAPOL frame, encapsulates it in a RADIUS Access-Request frame and forwards the frame to the authentication server. The authentication server replies with an Access-Challenge frame. The Access-Challenge frame requests that the supplicant prove that it is who it claims to be, using a specified method (an EAP- Method).
  • Page 84: Eap Over Radius

    The Type value for EAP messages is 79. Figure 5. EAP Over RADIUS RADIUS Attributes for 802.1 Support Dell Networking systems include the following RADIUS attributes in all 802.1X-triggered Access-Request messages: Attribute 31 Calling-station-id: relays the supplicant MAC address to the authentication server.
  • Page 85: Important Points To Remember

    Important Points to Remember • Dell Networking OS supports 802.1X with EAP-MD5, EAP-OTP, EAP-TLS, EAP-TTLS, PEAPv0, PEAPv1, and MS-CHAPv2 with PEAP. • All platforms support only RADIUS as the authentication server. • If the primary RADIUS server becomes unresponsive, the authenticator begins using a secondary RADIUS server, if configured.
  • Page 86 Verify that 802.1X is enabled globally and at the interface level using the show running-config | find dot1x command from EXEC Privilege mode. In the following example, the bold lines show that 802.1X is enabled. Dell#show running-config | find dot1x dot1x authentication [output omitted]...
  • Page 87: Configuring Request Identity Re-Transmissions

    Configuring Request Identity Re-Transmissions If the authenticator sends a Request Identity frame, but the supplicant does not respond, the authenticator waits 30 seconds and then re-transmits the frame. The amount of time that the authenticator waits before re-transmitting and the maximum number of times that the authenticator re-transmits are configurable.
  • Page 88: Forcibly Authorizing Or Unauthorizing A Port

    Example of Configuring and Verifying Port Authentication The following example shows configuration information for a port for which the authenticator re- transmits an EAP Request Identity frame: • after 90 seconds and a maximum of 10 times for an unresponsive supplicant •...
  • Page 89: Re-Authenticating A Port

    Example of Placing a Port in Force-Authorized State and Viewing the Configuration The example shows configuration information for a port that has been force-authorized. The bold line shows the new port-control state. Dell(conf-if-Te-1/1)#dot1x port-control force-authorized Dell(conf-if-Te-1/1)#show dot1x interface TenGigabitEthernet 1/1 802.1x information on Te 1/1: ----------------------------- Dot1x Status:...
  • Page 90: Configuring Timeouts

    The bold lines show that re-authentication is enabled and the new maximum and re-authentication time period. Dell(conf-if-Te-1/1)#dot1x reauthentication interval 7200 Dell(conf-if-Te-1/1)#dot1x reauth-max 10 Dell(conf-if-Te-1/1)#do show dot1x interface TenGigabitEthernet 1/1 802.1x information on Te 1/1: ----------------------------- Dot1x Status: Enable Port Control:...
  • Page 91: Configuring Dynamic Vlan Assignment With Port Authentication

    The RADIUS server authenticates the request and returns a RADIUS ACCEPT message with the VLAN assignment using Tunnel-Private-Group-ID The illustration shows the configuration on the Dell Networking system before connecting the end user device in black and blue text, and after connecting the device in red text. The blue text corresponds to the preceding numbered steps on dynamic VLAN assignment with 802.1X.
  • Page 92: Guest And Authentication-Fail Vlans

    Authentication). Guest and Authentication-Fail VLANs Typically, the authenticator (the Dell system) denies the supplicant access to the network until the supplicant is authenticated. If the supplicant is authenticated, the authenticator enables the port and places it in either the VLAN for which the port is configured or the VLAN that the authentication server indicates in the authentication data.
  • Page 93: Configuring A Guest Vlan

    INTERFACE mode. View your configuration using the show config command from INTERFACE mode or using the show dot1x interface command from EXEC Privilege mode. Example of Viewing Guest VLAN Configuration Dell(conf-if-Te-2/1)#dot1x guest-vlan 200 Dell(conf-if-Te 2/1))#show config interface TenGigabitEthernet 2/1 switchport...
  • Page 94 TenGigabitEthernet 2/1 switchport dot1x authentication dot1x guest-vlan 200 no shutdown Dell(conf-if-Te-2/1)# Dell(conf-if-Te-2/1)#dot1x auth-fail-vlan 100 max-attempts 5 Dell(conf-if-Te-2/1)#show config interface TenGigabitEthernet 2/1 switchport dot1x authentication dot1x guest-vlan 200 dot1x auth-fail-vlan 100 max-attempts 5 no shutdown Dell(conf-if-Te-2/1)# Example of Viewing Configured Authentication...
  • Page 95: Access Control Lists (Acls)

    When creating an access list, the sequence of the filters is important. You have a choice of assigning sequence numbers to the filters as you enter them, or the Dell Networking Operating System (OS) assigns numbers in the order the filters are created. The sequence numbers are listed in the display output of the show config and show ip accounting access-list commands.
  • Page 96: Cam Usage

    Privilege mode. The following example shows the output when executing this command. The status column indicates whether you can enable the policy. Example of the Command test cam-usage Dell#test cam-usage service-policy input TestPolicy linecard all Linecard|Portpipe|CAM Partition|Available CAM|Estimated CAM per Port|Status -------------------------------------------------------------------------- IPv4Flow| 232|...
  • Page 97: Implementing Acls On Dell Networking Os

    Implementing ACLs on Dell Networking OS You can assign one IP ACL per interface with Dell Networking OS. If you do not assign an IP ACL to an interface, it is not used by the software in any other capacity.
  • Page 98: Ip Fragment Handling

    0 to 254. Dell Networking OS writes to the CAM ACL rules with lower-order numbers (order numbers closer to 0) before rules with higher-order numbers so that packets are matched as you intended. By default, all ACL rules have an order of 255.
  • Page 99: Layer 4 Acl Rules Examples

    In this first example, TCP packets from host 10.1.1.1 with TCP destination port equal to 24 are permitted. All others are denied. Dell(conf)#ip access-list extended ABC Dell(conf-ext-nacl)#permit tcp host 10.1.1.1 any eq 24 Dell(conf-ext-nacl)#deny ip any any fragment Dell(conf-ext-nacl) Example of Permitting Only First Fragments and Non-Fragmented Packets from a Specified Host In the following example, the TCP packets that are first fragments or non-fragmented from host 10.1.1.1...
  • Page 100: Configure A Standard Ip Acl

    To configure an ACL, use commands in IP ACCESS LIST mode and INTERFACE mode. For a complete list of all the commands related to IP ACLs, refer to the Dell Networking OS Command Line Interface Reference Guide. To set up extended ACLs, refer to Configure an Extended IP ACL.
  • Page 101: Configuring A Standard Ip Acl Filter

    To delete a filter, use the no seq sequence-number command in IP ACCESS LIST mode. If you are creating a standard ACL with only one or two filters, you can let Dell Networking OS assign a sequence number based on the order in which the filters are configured. The software assigns filters in multiples of 5.
  • Page 102: Configure An Extended Ip Acl

    To view all configured IP ACLs, use the show ip accounting access-list command in EXEC Privilege mode. The following examples shows how to view a standard ACL filter sequence for an interface. Dell#show ip accounting access example interface gig 4/12 Extended IP access list example seq 15 deny udp any any eq 111...
  • Page 103: Configuring Filters Without A Sequence Number

    Configuring Filters Without a Sequence Number If you are creating an extended ACL with only one or two filters, you can let Dell Networking OS assign a sequence number based on the order in which the filters are configured. Dell Networking OS assigns filters in multiples of five.
  • Page 104: Configure Layer 2 And Layer 3 Acls

    When Dell Networking OS routes the packets, only the L3 ACL governs them because they are not filtered against an L2 ACL. • When Dell Networking OS switches the packets, first the L3 ACL filters them, then the L2 ACL filters them. •...
  • Page 105: Assign An Ip Acl To An Interface

    • L2 egress access list If a rule is simply appended, existing counters are not affected. Table 6. L2 and L3 Filtering on Switched Packets L2 ACL Behavior L3 ACL Behavior Decision on Targeted Traffic Deny Deny L3 ACL denies. Deny Permit L3 ACL permits.
  • Page 106: Counting Acl Hits

    Example of Applying ACL Rules to Ingress Traffic and Viewing ACL Configuration To specify ingress, use the in keyword. Begin applying rules to the ACL with the ip access-list extended abcd command. To view the access-list, use the show command. Dell(conf)#interface tengigabitethernet 1/1 Dell(conf-if-te1/1)#ip access-group abcd in Access Control Lists (ACLs)
  • Page 107: Configure Egress Acls

    1/1 no ip address ip access-group abcd in no shutdown Dell(conf-if-te1/1)#end Dell#configure terminal Dell(conf)#ip access-list extended abcd Dell(config-ext-nacl)#permit tcp any any Dell(config-ext-nacl)#deny icmp any any Dell(config-ext-nacl)#permit 1.1.1.2 Dell(config-ext-nacl)#end Dell#show ip accounting access-list Extended Ingress IP access list abcd on tengigabitethernet 1/1...
  • Page 108: Applying Egress Layer 3 Acls (Control-Plane)

    To specify ingress, use the out keyword. Begin applying rules to the ACL with the ip access-list extended abcd command. To view the access-list, use the show command. Dell(conf)#interface TenGigabitEthernet 1/1 Dell(conf-if-te-1/1)#ip access-group abcd out Dell(conf-if-te-1/1)#show config TenGigabitEthernet 1/1 no ip address...
  • Page 109: Ip Prefix Lists

    (if configured) is applied. When the route prefix matches a filter, Dell Networking OS drops or forwards the packet based on the filter’s designated action. If the route prefix does not match any of the filters in the prefix list, the route is dropped (that is, implicit deny).
  • Page 110 Configuring a prefix list • Use a prefix list for route redistribution For a complete listing of all commands related to prefix lists, refer to the Dell Networking OS Command Line Interface Reference Guide. Creating a Prefix List To create a prefix list, use the following commands.
  • Page 111 If you are creating a standard prefix list with only one or two filters, you can let Dell Networking OS assign a sequence number based on the order in which the filters are configured. The Dell Networking OS assigns filters in multiples of five.
  • Page 112 The following example shows the show ip prefix-list detail command. Dell>show ip prefix detail Prefix-list with the last deletion/insertion: filter_ospf ip prefix-list filter_in: count: 3, range entries: 3, sequences: 5 - 10 seq 5 deny 1.102.0.0/16 le 32 (hit count: 0) seq 6 deny 2.1.0.0/16 ge 23 (hit count: 0)
  • Page 113: Acl Resequencing

    10.0.0.0 Dell(conf-router_rip)#router ospf 34 Applying a Filter to a Prefix List (OSPF) To apply a filter to routes in open shortest path first (OSPF), use the following commands. • Enter OSPF mode. CONFIGURATION mode router ospf •...
  • Page 114: Resequencing An Acl Or Prefix List

    The example shows the resequencing of an IPv4 access-list beginning with the number 2 and incrementing by 2. Dell(config-ext-nacl)# show config ip access-list extended test remark 4 XYZ remark 5 this remark corresponds to permit any host 1.1.1.1 seq 5 permit ip any host 1.1.1.1...
  • Page 115: Route Maps

    Dell# end Dell# resequence access-list ipv4 test 2 2 Dell# show running-config acl ip access-list extended test remark 2 XYZ remark 4 this remark corresponds to permit any host 1.1.1.1 seq 4 permit ip any host 1.1.1.1 remark 6 this remark has no corresponding rule remark 8 this remark corresponds to permit ip any host 1.1.1.2...
  • Page 116: Implementation Information

    Implementation Information The Dell Networking OS implementation of route maps allows route maps with the no match or no set commands. When there is no match command, all traffic matches the route map and the set command applies. Important Points to Remember •...
  • Page 117 You can create multiple instances of this route map by using the sequence number option to place the route maps in the correct order. Dell Networking OS processes the route maps with the lowest sequence number first. When a configured route map is applied to a command, such as redistribute, traffic passes through all instances of that route map until a match is found.
  • Page 118: Configuring Match Routes

    In the following example, instance 10 permits the route having a tag value of 1000 and instances 20 and 30 deny the route having a tag value of 1000. In this scenario, Dell Networking OS scans all the instances of the route-map for any permit statement. If there is a match anywhere, the route is permitted.
  • Page 119 • Match routes with the same AS-PATH numbers. CONFIG-ROUTE-MAP mode match as-path as-path-name • Match routes with COMMUNITY list attributes in their path. CONFIG-ROUTE-MAP mode match community community-list-name [exact] • Match routes whose next hop is a specific interface. CONFIG-ROUTE-MAP mode match interface interface The parameters are: –...
  • Page 120: Configuring Set Conditions

    CONFIG-ROUTE-MAP mode match origin {egp | igp | incomplete} • Match routes specified as internal or external to OSPF, ISIS level-1, ISIS level-2, or locally generated. CONFIG-ROUTE-MAP mode match route-type {external [type-1 | type-2] | internal | level-1 | level-2 | local } •...
  • Page 121: Configure A Route Map For Route Redistribution

    Route maps on their own cannot affect traffic and must be included in different commands to affect routing traffic. Route redistribution occurs when Dell Networking OS learns the advertising routes from static or directly connected routes or another routing protocol. Different protocols assign different values to redistributed routes to identify either the routes and their origins.
  • Page 122: Configure A Route Map For Route Tagging

    30! Logging of ACL Processes This functionality is supported on the Z9000 platform. To assist in the administration and management of traffic that traverses the device after being validated by the configured ACLs, you can enable the generation of logs for access control list (ACL) processes.
  • Page 123: Guidelines For Configuring Acl Logging

    You can enable logging separately for each of these FP entries, which relate to each of the ACL entries configured in an ACL. Dell Networking OS saves a table that maps each ACL entry that matches the ACL name on the received packet, sequence number of the rule, and the interface index in the database.
  • Page 124: Configuring Acl Logging

    251 indices available for ACL logging. Configuring ACL Logging This functionality is supported on the Z9000 platform. To configure the maximum number of ACL log messages to be generated and the frequency at which these messages must be generated, perform the following steps: NOTE: This example describes the configuration of ACL logging for standard IP access lists.
  • Page 125: Flow-Based Monitoring Support For Acls

    [log [interval minutes]] Flow-Based Monitoring Support for ACLs Flow-based monitoring is supported on the Z9000 platform. Flow-based monitoring conserves bandwidth by monitoring only the specified traffic instead of all traffic on the interface. It is available for Layer 2 and Layer 3 ingress traffic. You can specify traffic using standard or extended access-lists.
  • Page 126 The show monitor session session-id command has been enhanced to display the Type field in the output, which indicates whether a particular session is enabled for flow-monitoring. Example Output of the show Command Dell(conf-mon-sess-0)#do show monitor session 0 SessID Source...
  • Page 127: Enabling Flow-Based Monitoring

    Layer 3 ingress and egress traffic. You can specify traffic using standard or extended access-lists. Enable flow-based monitoring for a monitoring session. MONITOR SESSION mode flow-based enable Define access-list rules that include the keyword monitor. Dell Networking OS only considers port monitoring traffic that matches rules with the keyword monitor. CONFIGURATION mode ip access-list...
  • Page 128 ------ ------ ----------- ---- --------- -------- Te 1/1 Te 1/2 Flow Access Control Lists (ACLs)
  • Page 129: Access Control List (Acl) Vlan Groups And Content Addressable Memory (Cam)

    VLANs and when Layer 2 or Layer 3 ACLs are applied on a set of ports. In releases of Dell Networking OS that do not support the CAM optimization functionality, when an ACL is applied on a VLAN, the ACL rules are configured with the rule-specific parameters and the VLAN as additional attributes in the ACL region.
  • Page 130: Guidelines For Configuring Acl Vlan Groups

    • The description of the ACL group is added or removed. Guidelines for Configuring ACL VLAN groups ACL VLAN groups are supported on the Z9000 platform. Keep the following points in mind when you configure ACL VLAN groups: • The interfaces, to which the ACL VLAN group is applied, function as restricted interfaces. The ACL VLAN group name is used to identify the group of VLANs that is used to perform hierarchical filtering.
  • Page 131: Configuring Acl Vlan Groups And Configuring Fp Blocks For Vlan Parameters

    The maximum number of VLANs that you can configure as a member of ACL VLAN groups is limited to 512 on the Z9000 switch if two slices are allocated. If only one virtual flow processing slice is allocated, the maximum number of VLANs that you can configure as a member of an ACL VLAN group is 256 for the Z9000 switch.
  • Page 132: Configuring Fp Blocks For Vlan Parameters

    {VLAN-range} Display all the ACL VLAN groups or display a specific ACL VLAN group, identified by name. CONFIGURATION (conf-acl-vl-grp) mode show acl-vlan-group {group name | detail} Dell#show acl-vlan-group detail Group Name : TestGroupSeventeenTwenty Egress IP Acl : SpecialAccessOnlyExpertsAllowed...
  • Page 133: Viewing Cam Usage

    | OUT-L2 ACL Viewing CAM Usage This functionality is supported on the Z9000 platform. View the amount of CAM space available, used, and remaining in each partition (including IPv4Flow and Layer 2 ACL sub- partitions) using the show cam-usage command in EXEC Privilege mode Display Layer 2, Layer 3, ACL, or all CAM usage statistics.
  • Page 134: Allocating Fp Blocks For Vlan Processes

    16384 Allocating FP Blocks for VLAN Processes This functionality is supported on the Z9000 platform. The VLAN ContentAware Processor (VCAP) application is a preingress CAP that modifies the VLAN settings before packets are forwarded. To support the ACL CAM optimization functionality, the CAM carving feature is enhanced.
  • Page 135 You can configure only two of these features at a time. • To allocate the number of FP blocks for VLAN open flow operations, use the cam-acl-vlan vlanopenflow <0-2> command. • To allocate the number of FP blocks for VLAN iSCSI counters, use the cam-acl-vlan vlaniscsi <0-2>...
  • Page 136: Bidirectional Forwarding Detection (Bfd)

    BFD also carries less overhead than routing protocol hello mechanisms. Control packets can be encapsulated in any form that is convenient, and, on Dell Networking routers, BFD agents maintain sessions that reside on the line card, which frees resources on the route processor module (RPM). Only session state changes are reported to the BFD Manager (on the RPM), which in turn notifies the routing protocols that are registered with it.
  • Page 137: Bfd Packet Format

    NOTE: A session state change from Up to Down is the only state change that triggers a link state change in the routing protocol client. BFD Packet Format Control packets are encapsulated in user datagram protocol (UDP) packets. The following illustration shows the complete encapsulation of a BFD control packet inside an IPv4 packet.
  • Page 138 Required Min Echo The minimum rate at which the local system would like to receive echo packets. NOTE: Dell Networking OS does not currently support the echo function. Authentication An optional method for authenticating control packets.
  • Page 139: Bfd Sessions

    Demand mode initiator. Either system (but not both) can request Demand mode at any time. NOTE: Dell Networking OS supports Asynchronous mode only. A session can have four states: Administratively Down, Down, Init, and Up.
  • Page 140: Session State Changes

    handshake. Now the discriminator values have been exchanged and the transmit intervals have been negotiated. The passive system receives the control packet and changes its state to Up. Both systems agree that a session has been established. However, because both members must send a control packet — that requires a response —...
  • Page 141: Important Points To Remember

    BFD is not supported on multi-hop and virtual links. • Protocol Liveness is supported for routing protocols only. • Dell Networking OS supports only OSPF, OSPFv3, IS-IS, BGP, and VRRP protocols as BFD clients. Configure BFD This section contains the following procedures. •...
  • Page 142: Configure Bfd For Physical Ports

    • Configure BFD for IS-IS • Configure BFD for BGP • Configure BFD for VRRP • Configuring Protocol Liveness • Troubleshooting BFD Configure BFD for Physical Ports Configuring BFD for physical ports is supported on the C-Series and E-Series platforms only. BFD on physical ports is useful when you do not enable the routing protocol.
  • Page 143 Establishing a Session on Physical Ports To establish a session, enable BFD at the interface level on both ends of the link, as shown in the following illustration. The configuration parameters do not need to match. Figure 11. Establishing a BFD Session on Physical Ports Enter interface mode.
  • Page 144 2.2.2.2 on interface Te 4/24 (diag: 0) Viewing Physical Port Session Parameters BFD sessions are configured with default intervals and a default role (active). Dell Networking recommends maintaining the default values. To view session parameters, use the show bfd neighbors detail command.
  • Page 145: Configure Bfd For Static Routes

    Number of messages from IFA about port state change: 0 Number of messages communicated b/w Manager and Agent: 7 Disabling and Re-Enabling BFD BFD is enabled on all interfaces by default, though sessions are not created unless explicitly configured. If you disable BFD, all of the sessions on that interface are placed in an Administratively Down state ( the first message example), and the remote systems are notified of the session state change (the second message example).
  • Page 146 Establishing Sessions for Static Routes Sessions are established for all neighbors that are the next hop of a static route. Figure 12. Establishing Sessions for Static Routes To establish a BFD session, use the following command. • Establish BFD sessions for all neighbors that are the next hop of a static route. CONFIGURATION mode ip route bfd Example of the show bfd neighbors Command to Verify Static Routes...
  • Page 147: Configure Bfd For Ospf

    • Change parameters for all static route sessions. CONFIGURATION mode ip route bfd interval milliseconds min_rx milliseconds multiplier value role [active | passive] To view session parameters, use the show bfd neighbors detail command, as shown in the examples in Displaying BFD for BGP Information Disabling BFD for Static Routes If you disable BFD, all static route BFD sessions are torn down.
  • Page 148 Establishing Sessions with OSPF Neighbors BFD sessions can be established with all OSPF neighbors at once or sessions can be established with all neighbors out of a specific interface. Sessions are only established when the OSPF adjacency is in the Full state.
  • Page 149 INTERFACE mode ip ospf bfd all-neighbors Example of Verifying Sessions with OSPF Neighbors To view the established sessions, use the show bfd neighbors command. The bold line shows the OSPF BFD sessions. R2(conf-router_ospf)#bfd all-neighbors R2(conf-router_ospf)#do show bfd neighbors - Active session role Ad Dn - Admin Down - CLI - ISIS...
  • Page 150: Configure Bfd For Ospfv3

    • Disable BFD sessions with all OSPF neighbors. ROUTER-OSPF mode no bfd all-neighbors • Disable BFD sessions with all OSPF neighbors on an interface. INTERFACE mode ip ospf bfd all-neighbors disable Configure BFD for OSPFv3 BFD for OSPFv3 provides support for IPV6. Configuring BFD for OSPFv3 is a two-step process: Enable BFD globally.
  • Page 151: Configure Bfd For Is-Is

    • Change parameters for all OSPFv3 sessions. ROUTER-OSPFv3 mode bfd all-neighbors interval milliseconds min_rx milliseconds multiplier value role [active | passive] • Change parameters for OSPFv3 sessions on a single interface. INTERFACE mode ipv6 ospf bfd all-neighbors interval milliseconds min_rx milliseconds multiplier value role [active | passive] Disabling BFD for OSPFv3 If you disable BFD globally, all sessions are torn down and sessions on the remote system are placed in a...
  • Page 152 Establishing Sessions with IS-IS Neighbors BFD sessions can be established for all IS-IS neighbors at once or sessions can be established for all neighbors out of a specific interface. Figure 14. Establishing Sessions with IS-IS Neighbors To establish BFD with all IS-IS neighbors or with IS-IS neighbors on a single interface, use the following commands.
  • Page 153 The bold line shows that IS-IS BFD sessions are enabled. R2(conf-router_isis)#bfd all-neighbors R2(conf-router_isis)#do show bfd neighbors - Active session role Ad Dn - Admin Down - CLI - ISIS - OSPF - Static Route (RTM) LocalAddr RemoteAddr Interface State Rx-int Tx-int Mult Clients * 2.2.2.2 2.2.2.1 Te 2/1...
  • Page 154: Configure Bfd For Bgp

    INTERFACE mose isis bfd all-neighbors disable Configure BFD for BGP In a BGP core network, BFD provides rapid detection of communication failures in BGP fast-forwarding paths between internal BGP (iBGP) and external BGP (eBGP) peers for faster network reconvergence. BFD for BGP is supported on 1GE, 10GE, 40GE, port-channel, and VLAN interfaces.
  • Page 155 Figure 15. Establishing Sessions with BGP Neighbors The sample configuration shows alternative ways to establish a BFD session with a BGP neighbor: • By establishing BFD sessions with all neighbors discovered by BGP (the bfd all-neighbors command). • By establishing a BFD session with a specified BGP neighbor (the neighbor {ip-address | peer- group-name} bfd command) BFD packets originating from a router are assigned to the highest priority egress queue to minimize transmission delays.
  • Page 156 typical response is to terminate the peering session for the routing protocol and reconverge by bypassing the failed neighboring router. A log message is generated whenever BFD detects a failure condition. Enable BFD globally. CONFIGURATION mode bfd enable Specify the AS number and enter ROUTER BGP configuration mode. CONFIGURATION mode router bgp as-number Add a BGP neighbor or peer group in a remote AS.
  • Page 157 ROUTER BGP mode neighbor {ip-address | peer-group-name} bfd disable • Remove the disabled state of a BFD for BGP session with a specified neighbor. ROUTER BGP mode no neighbor {ip-address | peer-group-name} bfd disable Use BFD in a BGP Peer Group You can establish a BFD session for the members of a peer group (the neighbor peer-group-name bfd command in ROUTER BGP configuration mode).
  • Page 158 Examples of the BFD show Commands The following example shows verifying a BGP configuration. R2# show running-config bgp router bgp 2 neighbor 1.1.1.2 remote-as 1 neighbor 1.1.1.2 no shutdown neighbor 2.2.2.2 remote-as 1 neighbor 2.2.2.2 no shutdown neighbor 3.3.3.2 remote-as 1 neighbor 3.3.3.2 no shutdown bfd all-neighbors The following example shows viewing all BFD neighbors.
  • Page 159 Number of messages from IFA about port state change: 0 Number of messages communicated b/w Manager and Agent: 5 Session Discriminator: 10 Neighbor Discriminator: 11 Local Addr: 2.2.2.3 Local MAC Addr: 00:01:e8:66:da:34 Remote Addr: 2.2.2.2 Remote MAC Addr: 00:01:e8:8a:da:7b Int: TenGigabitEthernet 6/2 State: Up Configured parameters: TX: 100ms, RX: 100ms, Multiplier: 3...
  • Page 160 Down Admin Down The following example shows viewing BFD summary information. The bold line shows the message displayed when you enable BFD for BGP connections. R2# show ip bgp summary BGP router identifier 10.0.0.1, local AS number 2 BGP table version is 0, main routing table version 0 BFD is enabled, Interval 100 Min_rx 100 Multiplier 3 Role Active 3 neighbor(s) using 24168 bytes of memory Neighbor AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down...
  • Page 161: Configure Bfd For Vrrp

    Connections established 1; dropped 0 Last reset never Local host: 2.2.2.3, Local port: 63805 Foreign host: 2.2.2.2, Foreign port: 179 E1200i_ExaScale# R2# show ip bgp neighbors 2.2.2.3 BGP neighbor is 2.2.2.3, remote AS 1, external link Member of peer-group pg1 for session parameters BGP version 4, remote router ID 12.0.0.4 BGP state ESTABLISHED, in this state for 00:05:33 Neighbor is using BGP neighbor mode BFD configuration...
  • Page 162 Establishing Sessions with All VRRP Neighbors BFD sessions can be established for all VRRP neighbors at once, or a session can be established with a particular neighbor. Figure 16. Establishing Sessions with All VRRP Neighbors To establish sessions with all VRRP neighbors, use the following command. •...
  • Page 163 The bold line shows that VRRP BFD sessions are enabled. Dell(conf-if-te-4/25)#vrrp bfd all-neighbors Dell(conf-if-te-4/25)#do show bfd neighbor - Active session role Ad Dn - Admin Down - CLI - ISIS - OSPF - Static Route (RTM) - VRRP LocalAddr RemoteAddr Interface State Rx-int Tx-int Mult Clients * 2.2.5.1...
  • Page 164: Configuring Protocol Liveness

    vrrp bfd all-neighbors interval milliseconds min_rx milliseconds multiplier value role [active | passive] • Change parameters for a particular VRRP session. INTERFACE mode vrrp bfd neighbor ip-address interval milliseconds min_rx milliseconds multiplier value role [active | passive] To view session parameters, use the show bfd neighbors detail command, as shown in the example in Verifying BFD Sessions with BGP Neighbors Using the show bfd neighbors command example in Displaying BFD for BGP...
  • Page 165 debug bfd detail • Examine the control packets in hexadecimal format. CONFIGURATION debug bfd packet Examples of Output from the debug bfd Commands The following example shows a three-way handshake using the debug bfd detail command. R1(conf-if-te-4/24)#00:54:38: %RPM0-P:RP2 %BFDMGR-1-BFD_STATE_CHANGE: Changed session state to Down for neighbor 2.2.2.2 on interface Te 4/24 (diag: 0) 00:54:38 : Sent packet for session with neighbor 2.2.2.2 on Te 4/24 TX packet dump:...
  • Page 166: Border Gateway Protocol Ipv4 (Bgpv4)

    Border Gateway Protocol IPv4 (BGPv4) This chapter provides a general description of BGPv4 as it is supported in the Dell Networking Operating System (OS). BGP protocol standards are listed in the Standards Compliance chapter. BGP is an external gateway protocol that transmits interdomain routing information within and between autonomous systems (AS).
  • Page 167 Figure 17. Internal BGP BGP version 4 (BGPv4) supports classless interdomain routing and aggregate routes and AS paths. BGP is a path vector protocol — a computer network in which BGP maintains the path that updated information takes as it diffuses through the network. Updates traveling through the network and returning to the same node are easily detected and discarded.
  • Page 168: Sessions And Peers

    Figure 18. BGP Routers in Full Mesh The number of BGP speakers each BGP peer must maintain increases exponentially. Network management quickly becomes impossible. Sessions and Peers When two routers communicate using the BGP protocol, a BGP session is started. The two end-points of that session are Peers.
  • Page 169: Establish A Session

    Establish a Session Information exchange between peers is driven by events and timers. The focus in BGP is on the traffic routing policies. In order to make decisions in its operations with other BGP peers, a BGP process uses a simple finite state machine that consists of six states: Idle, Connect, Active, OpenSent, OpenConfirm, and Established.
  • Page 170: Bgp Attributes

    Route reflection divides iBGP peers into two groups: client peers and nonclient peers. A route reflector and its client peers form a route reflection cluster. Because BGP speakers announce only the best route for a given prefix, route reflector rules are applied after the router makes its best path decision. •...
  • Page 171: Best Path Selection Criteria

    In non-deterministic mode (the bgp non-deterministic-med command is applied), paths are compared in the order in which they arrive. This method can lead to Dell Networking OS choosing different best paths from a set of paths, depending on the order in which they were received from the neighbors because MED may or may not get compared between the adjacent paths.
  • Page 172 Figure 20. BGP Best Path Selection Best Path Selection Details Prefer the path with the largest WEIGHT attribute. Prefer the path with the largest LOCAL_PREF attribute. Prefer the path that was locally Originated via a network command, redistribute command or aggregate-address command. Routes originated with the Originated via a network or redistribute commands are preferred over routes originated with the aggregate-address command.
  • Page 173: Weight

    Prefer the path with the lowest IGP metric to the BGP if next-hop is selected when synchronization is disabled and only an internal path remains. Dell Networking OS deems the paths as equal and does not perform steps 9 through 11, if the following criteria is met: the IBGP multipath or EBGP multipath are configured (the maximum-path command).
  • Page 174: Multi-Exit Discriminators (Meds)

    and AS300. This is advertised to all routers within AS100, causing all BGP speakers to prefer the path through Router B. Figure 21. BGP Local Preference Multi-Exit Discriminators (MEDs) If two ASs connect in more than one place, a multi-exit discriminator (MED) can be used to assign a preference to a preferred path.
  • Page 175: Origin

    BGP. In Dell Networking OS, these origin codes appear as shown in the following example. The question mark (?) indicates an origin code of INCOMPLETE (shown in bold). The lower case letter (i) indicates an origin code of IGP (shown in bold).
  • Page 176: As Path

    NOTE: Any update that contains the AS path number 0 is valid. The AS path is shown in the following example. The origin attribute is shown following the AS path information (shown in bold). Example of Viewing AS Paths Dell#show ip bgp paths Total 30655 Paths Address Hash Refcount Metric Path...
  • Page 177: Multiprotocol Bgp

    For some peers you can set the internal/IGP cost as the MED while setting others to a constant pre-defined metric as MED value. Dell Networking OS supports configuring the set metric-type internal command in a route-map to advertise the IGP cost as the MED to outbound EBGP peers when redistributing routes. The configured set metric value overwrites the default IGP cost.
  • Page 178: Ignore Router-Id For Some Best-Path Calculations

    MED: 100 Ignore Router-ID for Some Best-Path Calculations Dell Networking OS allows you to avoid unnecessary BGP best-path transitions between external paths under certain conditions. The bgp bestpath router-id ignore command reduces network disruption caused by routing and forwarding plane changes and allows for faster convergence.
  • Page 179: As4 Number Representation

    If 4-Byte AS numbers are not implemented, only ASPLAIN representation is supported. ASPLAIN is the method Dell Networking OS has used for all previous Dell Networking OS versions. ASPLAIN remains the default method with Dell Networking OS. With the ASPLAIN notation, a 32-bit binary AS number is translated into a decimal value.
  • Page 180: As Number Migration

    100 bgp asnotation asdot+ bgp four-octet-as-support neighbor 172.30.1.250 local-as 65057 <output truncated> Dell(conf-router_bgp)#do show ip bgp BGP table version is 31571, local router ID is 172.30.1.57 <output truncated> AS-PLAIN Dell(conf-router_bgp)#bgp asnotation asplain Dell(conf-router_bgp)#sho conf router bgp 100 bgp four-octet-as-support neighbor 172.30.1.250 local-as 65057...
  • Page 181 Figure 23. Before and After AS Number Migration with Local-AS Enabled When you complete your migration, and you have reconfigured your network with the new information, disable this feature. If you use the “no prepend” option, the Local-AS does not prepend to the updates received from the eBGP peer.
  • Page 182: Bgp4 Management Information Base (Mib)

    (SNMP) objects and notifications (traps) defined in draft-ietf-idr-bgp4-mibv2-05. To see these enhancements, download the MIB from the Dell website. NOTE: For the Force10-BGP4-V2-MIB and other MIB documentation, refer to the Dell iSupport web page. Important Points to Remember •...
  • Page 183: Configuration Information

    ROUTER BGP mode to configure a BGP neighbor. By default, BGP is disabled. By default, Dell Networking OS compares the MED attribute on different paths from within the same AS (the bgp always-compare-med command is not enabled). Border Gateway Protocol IPv4 (BGPv4)
  • Page 184: Enabling Bgp

    Disabled Enabling BGP By default, BGP is not enabled on the system. Dell Networking OS supports one autonomous system (AS) and assigns the AS number (ASN). To establish BGP sessions and route traffic, configure at least one BGP neighbor or peer.
  • Page 185 Assign an AS number and enter ROUTER BGP mode. CONFIGURATION mode router bgp as-number • as-number: from 0 to 65535 (2 Byte) or from 1 to 4294967295 (4 Byte) or 0.1 to 65535.65535 (Dotted format). Only one AS is supported per system. NOTE: If you enter a 4-Byte AS number, 4-Byte AS support is enabled automatically.
  • Page 186 Active For the router’s identifier, Dell Networking OS uses the highest IP address of the Loopback interfaces configured. Because Loopback interfaces are virtual, they cannot go down, thus preventing changes in the router ID. If you do not configure Loopback interfaces, the highest IP address of any interface is used as the router ID.
  • Page 187 The third line of the show ip bgp neighbors output contains the BGP State. If anything other than ESTABLISHED is listed, the neighbor is not exchanging information and routes. For more information about using the show ip bgp neighbors command, refer to the Dell Networking OS Command Line Interface Reference Guide.
  • Page 188: Configuring As4 Number Representations

    Term Description ASPLAIN the method Dell Networking OS used for all previous Dell Networking OS versions. It remains the default method with Dell Networking OS. With the ASPLAIN notation, a 32–bit binary AS number is translated into a decimal value.
  • Page 189 NOTE: ASPLAIN is the default method Dell Networking OS uses and does not appear in the configuration display. • Enable ASDOT AS Number representation. CONFIG-ROUTER-BGP mode bgp asnotation asdot • Enable ASDOT+ AS Number representation. CONFIG-ROUTER-BGP mode bgp asnotation asdot+ Examples of the bgp asnotation Commands The following example shows the bgp asnotation asplain command output.
  • Page 190: Configuring Peer Groups

    Configuring Peer Groups To configure multiple BGP neighbors at one time, create and populate a BGP peer group. An advantage of peer groups is that members of a peer group inherit the configuration properties of the group and share same update policy. A maximum of 256 peer groups are allowed on the system.
  • Page 191 10.14.8.60 remote-as 18505 neighbor 10.14.8.60 no shutdown Dell(conf-router_bgp)# To enable a peer group, use the neighbor peer-group-name no shutdown command in CONFIGURATION ROUTER BGP mode (shown in bold). Dell(conf-router_bgp)#neighbor zanzibar no shutdown Dell(conf-router_bgp)#show config router bgp 45 bgp fast-external-fallover bgp log-neighbor-changes...
  • Page 192: Configuring Bgp Fast Fall-Over

    ESTABLISHED state move to the IDLE state. To view the status of peer groups, use the show ip bgp peer-group command in EXEC Privilege mode, as shown in the following example. Dell>show ip bgp peer-group Peer-group zanzibar, remote AS 65535 BGP version 4...
  • Page 193 To verify that you enabled fast fall-over on a particular BGP neighbor, use the show ip bgp neighbors command. Because fast fall-over is disabled by default, it appears only if it has been enabled (shown in bold). Dell#sh ip bgp neighbors BGP neighbor is 100.100.100.100, remote AS 65517, internal link Member of peer-group test for session parameters BGP version 4, remote router ID 30.30.30.5...
  • Page 194: Configuring Passive Peering

    When a BGP neighbor connection with authentication configured is rejected by a passive peer-group, Dell Networking OS does not allow another passive peer-group on the same subnet to connect with the BGP neighbor. To work around this, change the BGP configuration or change the order of the peer group configuration.
  • Page 195: Maintaining Existing As Numbers During An As Migration

    CONFIG-ROUTER-BGP mode neighbor peer-group-name subnet subnet-number mask The peer group responds to OPEN messages sent on this subnet. Enable the peer group. CONFIG-ROUTER-BGP mode neighbor peer-group-name no shutdown Create and specify a remote peer for BGP neighbor. CONFIG-ROUTER-BGP mode neighbor peer-group-name remote-as as-number Only after the peer group responds to an OPEN message sent on the subnet does its BGP state change to ESTABLISHED.
  • Page 196: Allowing An As Number To Appear In Its Own As Path

    network 100.10.92.0/24 network 192.168.10.0/24 bgp four-octet-as-support neighbor 10.10.21.1 remote-as 65123 neighbor 10.10.21.1 filter-list Laura in neighbor 10.10.21.1 no shutdown neighbor 10.10.32.3 remote-as 65123 neighbor 10.10.32.3 no shutdown neighbor 100.10.92.9 remote-as 65192 neighbor 100.10.92.9 local-as 6500 neighbor 100.10.92.9 no shutdown neighbor 192.168.10.1 remote-as 65123 neighbor 192.168.10.1 update-source Loopback 0 neighbor 192.168.10.1 no shutdown neighbor 192.168.12.2 remote-as 65123...
  • Page 197: Enabling Graceful Restart

    Speeds convergence by advertising a special update packet known as an end-of-RIB marker. This marker indicates the peer has been updated with all routes in the local RIB. If you configure your system to do so, Dell Networking OS can perform the following actions during a hot failover: •...
  • Page 198: Enabling Neighbor Graceful Restart

    BGP graceful restart is active only when the neighbor becomes established. Otherwise, it is disabled. Graceful-restart applies to all neighbors with established adjacency. With the graceful restart feature, Dell Networking OS enables the receiving/restarting mode by default. In Receiver-Only mode, graceful restart saves the advertised routes of peers that support this capability when they restart.
  • Page 199 Example of the show ip bgp paths Command To view all BGP path attributes in the BGP database, use the show ip bgp paths command in EXEC Privilege mode. Dell#show ip bgp paths Total 30655 Paths Address Hash Refcount Metric Path...
  • Page 200: Regular Expressions As Filters

    For an AS-path access list, as shown in the previous commands, if the AS path matches the regular expression in the access list, the route matches the access list. The following lists the regular expressions accepted in Dell Networking OS. Regular Expression Definition ^ (caret) Matches the beginning of the input string.
  • Page 201: Redistributing Routes

    Dell(conf-router_bgp)#show conf router bgp 99 neighbor AAA peer-group neighbor AAA no shutdown neighbor 10.155.15.2 remote-as 32 neighbor 10.155.15.2 shutdown Dell(conf-router_bgp)#neigh 10.155.15.2 filter-list 1 in Dell(conf-router_bgp)#ex Dell(conf)#ip as-path access-list Eagle Dell(config-as-path)#deny 32$ Dell(config-as-path)#ex Dell(conf)#router bgp 99 Dell(conf-router_bgp)#neighbor AAA filter-list Eagle in...
  • Page 202: Enabling Additional Paths

    One attribute you can manipulate is the COMMUNITY attribute. This attribute is an optional attribute that is defined for a group of destinations. In Dell Networking OS, you can assign a COMMUNITY attribute to BGP routers by using an IP community list. After you create an IP community list, you can apply routing decisions to all routers meeting the criteria in the IP community list.
  • Page 203 All routes with the NO_EXPORT (0xFFFFFF01) community attribute must not be advertised outside a BGP confederation boundary, but are sent to CONFED-EBGP and IBGP peers. Dell Networking OS also supports BGP Extended Communities as described in RFC 4360 — BGP Extended Communities Attribute.
  • Page 204: Configuring An Ip Extended Community List

    To view the configuration, use the show config command in CONFIGURATION COMMUNITY-LIST or CONFIGURATION EXTCOMMUNITY LIST mode or the show ip {community-lists | extcommunity-list} command in EXEC Privilege mode. Dell#show ip community-lists ip community-list standard 1 deny 701:20 deny 702:20...
  • Page 205: Filtering Routes With Community Lists

    In addition to permitting or denying routes based on the values of the COMMUNITY attributes, you can manipulate the COMMUNITY attribute value and send the COMMUNITY attribute with the route information. By default, Dell Networking OS does not send the COMMUNITY attribute. To send the COMMUNITY attribute to BGP neighbors, use the following command. •...
  • Page 206 To view the BGP configuration, use the show config command in CONFIGURATION ROUTER BGP mode. If you want to remove or add a specific COMMUNITY number from a BGP path, you must create a route map with one or both of the following statements in the route map. Then apply that route map to a BGP neighbor or peer group.
  • Page 207: Changing Med Attributes

    209 7170 1455 i --More-- Changing MED Attributes By default, Dell Networking OS uses the MULTI_EXIT_DISC or MED attribute when comparing EBGP paths from the same AS. To change how the MED attribute is used, enter any or all of the following commands.
  • Page 208: Changing The Next_Hop Attribute

    CONFIG-ROUTER-BGP mode bgp default local-preference value – value: the range is from 0 to 4294967295. The default is 100. To view the BGP configuration, use the show config command in CONFIGURATION ROUTER BGP mode or the show running-config bgp command in EXEC Privilege mode. A more flexible method for manipulating the LOCAL_PREF attribute value is to use a route map.
  • Page 209: Changing The Weight Attribute

    AS-Path ACLs filter routes based on the ASN. Route maps can filter and set conditions, change attributes, and assign update policies. NOTE: Dell Networking OS supports up to 255 characters in a set community statement inside a route map.
  • Page 210 For inbound and outbound updates the order of preference is: • prefix lists (using the neighbor distribute-list command) • AS-PATH ACLs (using the neighbor filter-list command) • route maps (using the neighbor route-map command) Prior to filtering BGP routes, create the prefix list, AS-PATH ACL, or route map. For configuration information about prefix lists, AS-PATH ACLs, and route maps, refer to Access Control Lists...
  • Page 211: Filtering Bgp Routes Using Route Maps

    • If the prefix list contains no filters, all routes are permitted. • If none of the routes match any of the filters in the prefix list, the route is denied. This action is called an implicit deny. (If you want to forward all routes that do not match the prefix list criteria, you must configure a prefix list filter to permit all routes.
  • Page 212: Filtering Bgp Routes Using As-Path Information

    BGP route reflectors are intended for ASs with a large mesh; they reduce the amount of BGP control traffic. NOTE: Dell Networking recommends not using multipath and add path simultaneously in a route reflector. With route reflection configured properly, IBGP routers are not fully meshed within a cluster but all receive routing information.
  • Page 213: Aggregating Routes

    BGP mode or the show running-config bgp in EXEC Privilege mode. Aggregating Routes Dell Networking OS provides multiple ways to aggregate routes in the BGP routing table. At least one specific route of the aggregate must be in the routing table for the configured aggregate to become active.
  • Page 214: Configuring Bgp Confederations

    When that penalty value reaches a configured limit, the route is not advertised, even if the route is up. In Dell Networking OS, that penalty value is 1024. As time passes and the route does not flap, the penalty value decrements or is decayed. However, if the route flaps again, it is assigned another penalty.
  • Page 215 • history entry — an entry that stores information on a downed route • dampened path — a path that is no longer advertised • penalized path — a path that is assigned a penalty To configure route flap dampening parameters, set dampening parameters using a route map, clear information on route dampening and return suppressed routes to active state, view statistics on route flapping, or change the path selection from the default mode (deterministic) to non-deterministic, use the following commands.
  • Page 216 – regexp regular-expression: enter a regular express to match on. By default, the path selection in Dell Networking OS is deterministic, that is, paths are compared irrespective of the order of their arrival. You can change the path selection method to non- deterministic, that is, paths are compared in the order in which they arrived (starting with the most recent).
  • Page 217: Changing Bgp Timers

    10.114.8.33 18508 117265 25069 780266 20 00:38:50 102759 Dell> To view which routes are dampened (non-active), use the show ip bgp dampened-routes command in EXEC Privilege mode. Changing BGP Timers To configure BGP timers, use either or both of the following commands.
  • Page 218 When inbound soft reconfiguration is done later, the stored information is used to generate a new set of inbound updates. Dell>router bgp 100 neighbor 10.108.1.1 remote-as 200 neighbor 10.108.1.1 soft-reconfiguration inbound...
  • Page 219: Route Map Continue

    The routes associated with multicast routing are used by the protocol independent multicast (PIM) to build data distribution trees. Dell Networking OS MBGP is implemented per RFC 1858. You can enable the MBGP feature per router and/or per peer/peer-group.
  • Page 220: Bgp Regular Expression Optimization

    Most Dell Networking OS BGP IPv4 unicast commands are extended to support the IPv4 multicast RIB using extra options to the command. For a detailed description of the MBGP commands, refer to the Dell Networking OS Command Line Interface Reference Guide.
  • Page 221: Storing Last And Bad Pdus

    Storing Last and Bad PDUs Dell Networking OS stores the last notification sent/received and the last bad protocol data unit (PDU) received on a per peer basis. The last bad PDU is the one that causes a notification to be issued.
  • Page 222: Capturing Pdus

    To change the maximum buffer size, use the capture bgp-pdu max-buffer-size command. To view the captured PDUs, use the show capture bgp-pdu neighbor command. Dell#show capture bgp-pdu neighbor 20.20.20.2 Incoming packet capture enabled for BGP neighbor 20.20.20.2 Available buffer size 40958758, 26 packet(s) captured using 680 bytes...
  • Page 223: Pdu Counters

    243295 313511 0 00:12:46 207896 PDU Counters Dell Networking OS supports additional counters for various types of PDUs sent and received from neighbors. These are seen in the output of the show ip bgp neighbor command. Sample Configurations The following example configurations show how to enable BGP and set up some peer groups. These examples are not comprehensive directions.
  • Page 224 The following illustration shows the configurations described on the following examples. These configurations show how to create BGP areas using physical and virtual links. They include setting up the interfaces and peers groups with each other. Figure 24. Sample Configurations Example of Enabling BGP (Router 1) R1# conf R1(conf)#int loop 0...
  • Page 225 R1(conf-if-te-1/31)#show config interface TengigabitEthernet 1/31 ip address 10.0.3.31/24 no shutdown R1(conf-if-te-1/31)#router bgp 99 R1(conf-router_bgp)#network 192.168.128.0/24 R1(conf-router_bgp)#neighbor 192.168.128.2 remote 99 R1(conf-router_bgp)#neighbor 192.168.128.2 no shut R1(conf-router_bgp)#neighbor 192.168.128.2 update-source loop 0 R1(conf-router_bgp)#neighbor 192.168.128.3 remote 100 R1(conf-router_bgp)#neighbor 192.168.128.3 no shut R1(conf-router_bgp)#neighbor 192.168.128.3 update-source loop 0 R1(conf-router_bgp)#show config router bgp 99 network 192.168.128.0/24...
  • Page 226 Example of Enabling BGP (Router 3) R3# conf R3(conf)# R3(conf)#int loop 0 R3(conf-if-lo-0)#ip address 192.168.128.3/24 R3(conf-if-lo-0)#no shutdown R3(conf-if-lo-0)#show config interface Loopback 0 ip address 192.168.128.3/24 no shutdown R3(conf-if-lo-0)#int te 3/11 R3(conf-if-te-3/11)#ip address 10.0.3.33/24 R3(conf-if-te-3/11)#no shutdown R3(conf-if-te-3/11)#show config interface TengigabitEthernet 3/11 ip address 10.0.3.33/24 no shutdown R3(conf-if-lo-0)#int te 3/21...
  • Page 227 neighbor 192.168.128.2 no shutdown neighbor 192.168.128.3 remote-as 100 neighbor 192.168.128.3 peer-group BBB neighbor 192.168.128.3 update-source Loopback 0 neighbor 192.168.128.3 no shutdown R1#show ip bgp summary BGP router identifier 192.168.128.1, local AS number 99 BGP table version is 1, main routing table version 1 1 network entrie(s) using 132 bytes of memory 3 paths using 204 bytes of memory BGP-RIB over all using 207 bytes of memory...
  • Page 228 R2(conf-router_bgp)# neighbor 192.168.128.3 no shut R2(conf-router_bgp)#show conf router bgp 99 network 192.168.128.0/24 neighbor AAA peer-group neighbor AAA no shutdown neighbor BBB peer-group neighbor BBB no shutdown neighbor 192.168.128.1 remote-as 99 neighbor 192.168.128.1 peer-group CCC neighbor 192.168.128.1 update-source Loopback 0 neighbor 192.168.128.1 no shutdown neighbor 192.168.128.3 remote-as 100 neighbor 192.168.128.3 peer-group BBB neighbor 192.168.128.3 update-source Loopback 0...
  • Page 229 Received 93 messages, 0 in queue 5 opens, 0 notifications, 5 updates 83 keepalives, 0 route refresh requests Sent 99 messages, 0 in queue 5 opens, 4 notifications, 5 updates 85 keepalives, 0 route refresh requestsCapabilities received from neighbor for IPv4 Unicast : MULTIPROTO_EXT(1) ROUTE_REFRESH(2)
  • Page 230: Content Addressable Memory (Cam)

    Content Addressable Memory (CAM) CAM is a type of memory that stores information in the form of a lookup table. On Dell Networking systems, CAM stores Layer 2 and Layer 3 forwarding information, access-lists (ACLs), flows, and routing policies. CAM Allocation...
  • Page 231 Use the cam-acl-egress command to allocate the space for egress L2, IPV4 and IPV6 ACL. The total number of available FP blocks is 4. Allocate atleast one group of L2ACL and IPV4 ACL. Dell(conf)#do show cam-acl-egress -- Chassis Egress Cam ACL --...
  • Page 232: Test Cam Usage

    CAM space required. The Status column in the command output indicates whether or not the policy can be enabled. Example of the test cam-usage Command Dell#test cam-usage service-policy input test-cam-usage stack-unit 7 po 0 Stack-Unit | Portpipe | CAM Partition | Available CAM | Estimated CAM per Port | Status...
  • Page 233: View Cam-Acl Settings

    NOTE: If you select the CAM profile from CONFIGURATION mode, the output of this command does not reflect any changes until you save the running-configuration and reload the chassis. Example of show running-config cam-profile Command Dell#show running-config cam-profile cam-profile default microcode default Dell# View CAM-ACL Settings Thisshow cam-acl command shows the cam-acl setting that will be loaded after the next reload.
  • Page 234 The default values for the show cam-acl command are: Dell#show cam-acl -- Chassis Cam ACL -- Current Settings(in block sizes) 1 block = 128 entries...
  • Page 235: View Cam Usage

    View CAM Usage View the amount of CAM space available, used, and remaining in each ACL partition using the show cam-usage command from EXEC Privilege mode. Example of the show cam-usage Command Dell#show cam-usage Stackunit|Portpipe| CAM Partition | Total CAM Used CAM...
  • Page 236: Troubleshoot Cam Profiling

    If three resets do not bring up the card, or if the system is running an Dell Networking OS version prior to version 6.3.1.1, the system presents an error message. In this case, manually adjust the CAM configuration on the card to match the system configuration.
  • Page 237: Control Plane Policing (Copp)

    Control Plane Policing (CoPP) Control plane policing (CoPP) uses access control list (ACL) rules and quality of service (QoS) policies to create filters for a system’s control plane. That filter prevents traffic not specifically identified as legitimate from reaching the system control plane, rate-limits, traffic to an acceptable level. CoPP increases security on the system by protecting the routing processor from unnecessary or DoS traffic, giving priority to important control plane and management traffic.
  • Page 238: Configure Control Plane Policing

    Figure 26. CoPP Implemented Versus CoPP Not Implemented Configure Control Plane Policing The system can process a maximum of 4200 packets per second (PPS). Protocols that share a single queue may experience flaps if one of the protocols receives a high rate of control traffic even though per protocol CoPP is applied.
  • Page 239: Configuring Copp For Protocols

    queue rate limit value. You must complete queue bandwidth tuning carefully because the system cannot open up to handle any rate, including traffic coming at the line rate. CoPP policies are assigned on a per-protocol or a per-queue basis, and are assigned in CONTROL- PLANE mode to each port-pipe.
  • Page 240 Dell(conf-ipv6-acl-cpuqos)#exit Dell(conf)#ipv6 access-list ipv6-vrrp cpu-qos Dell(conf-ipv6-acl-cpuqos)#permit vrrp Dell(conf-ipv6-acl-cpuqos)#exit The following example shows creating the QoS input policy. Dell(conf)#qos-policy-in rate_limit_200k cpu-qos Dell(conf-in-qos-policy-cpuqos)#rate-police 200 40 peak 500 40 Dell(conf-in-qos-policy-cpuqos)#exit Dell(conf)#qos-policy-in rate_limit_400k cpu-qos Dell(conf-in-qos-policy-cpuqos)#rate-police 400 50 peak 600 50 Dell(conf-in-qos-policy-cpuqos)#exit Dell(conf)#qos-policy-in rate_limit_500k cpu-qos...
  • Page 241: Configuring Copp For Cpu Queues

    Examples of Configuring CoPP for CPU Queues The following example shows creating the QoS policy. Dell#conf Dell(conf)#qos-policy-input cpuq_1 Dell(conf-qos-policy-in)#rate-police 3000 40 peak 500 40 Dell(conf-qos-policy-in)#exit Dell(conf)#qos-policy-input cpuq_2 Dell(conf-qos-policy-in)#rate-police 5000 80 peak 600 50 Dell(conf-qos-policy-in)#exit Control Plane Policing (CoPP)
  • Page 242: Copp For Ospfv3 Packets

    However there are about 20 well known protocol streams that have to share these 4 CMIC queues. Before 9.4.(0.0)Dell Networking OS used only 8 queues most of the queues are shared to multiple protocols. So, increasing the number of CMIC queues will reduce the contention among the protocols for the queue bandwidth.
  • Page 243 points, and the queue (0 – 3) taken by the CPU bound data streams are uniform. In back-plane ports, queue 0 – 3 will carry both the front-end bound data streams as well as the CPU bound data streams which is acceptable but the well-known protocol streams must not be mixed with the data streams on queues 0 –...
  • Page 244 NDP Packets Neighbor discovery protocol has 4 types of packets NS, NA, RA, RS. These packets need to be taken to CPU for neighbor discovery. • Unicast NDP packets: – Packets hitting the L3 host/route table and discovered as local terminated packets/CPU bound traffic.
  • Page 245: Configuring Copp For Ospfv3

    VRRPv3, BGPv6, and ICMPv6. This functionality is supported on the S4810, S4820T, S6000, MXL, and Z9000 platforms. You can use the ipv6 access-list name cpu-qos permit ospfv3 or the ipv6 access-list name cpu-qos ospfv3 command to allow CoPP traffic for OSPFv3. The control plane management support for IPv6 ICMPv6 packets is enhanced to enable more number of CPU queues on port to be available and other COPP improvements have been implemented.
  • Page 246: Show Commands

    Create a QoS input policy for the router and assign the policing. CONFIGURATION mode Dell(conf)#qos-policy-input ospfv3_rate cpu-qos Dell(conf-in-qos-policy-cpuqos)#rate-police 1500 16 peak 1500 16 Create a QoS class map to differentiate the control-plane traffic and assign to the ACL. CONFIGURATION mode...
  • Page 247 Dell# Example of Viewing Queue Mapping To view the queue mapping for each configured protocol, use the show ip protocol-queue- mapping command. Dell#show ip protocol-queue-mapping Protocol Src-Port Dst-Port TcpFlag Queue EgPort Rate (kbps) -------- -------- -------- ------- ----- ------ -----------...
  • Page 248: Dynamic Host Configuration Protocol (Dhcp)

    Dynamic Host Configuration Protocol (DHCP) DHCP is an application layer protocol that dynamically assigns IP addresses and other configuration parameters to network end-stations (hosts) based on configuration policies determined by network administrators. DHCP relieves network administrators of manually configuring hosts, which can be a tedious and error- prone process when hosts often join, leave, and change locations on the network and it reclaims IP addresses that are no longer in use to prevent address exhaustion.
  • Page 249 Option Number and Description Subnet Mask Option 1 Specifies the client’s subnet mask. Router Option 3 Specifies the router IP addresses that may serve as the client’s default gateway. Domain Name Option 6 Server Specifies the domain name servers (DNSs) that are available to the client. Domain Name Option 15 Specifies the domain name that clients should use when resolving hostnames via...
  • Page 250: Assign An Ip Address Using Dhcp

    Option Number and Description Identifiers a user-defined string used by the Relay Agent to forward DHCP client packets to a specific server. L2 DHCP Option 82 Snooping Specifies IP addresses for DHCP messages received from the client that are to be monitored to build a DHCP snooping database.
  • Page 251: Implementation Information

    (VLAN) and then attempt to apply an access list to the VLAN, Dell Networking OS displays the first line in the following message. If you first apply an ACL to a VLAN and then attempt enable IP source address validation on one of its member ports, Dell Networking OS displays the second line in the following message.
  • Page 252: Configure The System To Be A Dhcp Server

    Configure the System to be a DHCP Server A DHCP server is a network device that has been programmed to provide network configuration parameters to clients upon request. Servers typically serve many clients, making host management much more organized and efficient. The following table lists the key responsibilities of DHCP servers.
  • Page 253 DHCP <POOL> mode show config After an IP address is leased to a client, only that client may release the address. Dell Networking OS performs a IP + MAC source address validation to ensure that no client can release another clients address.
  • Page 254: Specifying A Default Gateway

    DHCP <POOL> default-router address Configure a Method of Hostname Resolution Dell systems are capable of providing DHCP clients with parameters for two methods of hostname resolution—using DNS or NetBIOS WINS. Using DNS for Address Resolution A domain is a group of networks. DHCP clients query DNS IP servers when they need to correlate host names to IP addresses.
  • Page 255: Debugging The Dhcp Server

    NOTE: Dell Networking OS does not prevent you from using a network IP as a host IP; be sure to not use a network IP as a host IP.
  • Page 256 shown in the following illustration. Specify multiple DHCP servers by using the ip helper-address dhcp-address command multiple times. When you configure the ip helper-address command, the system listens for DHCP broadcast messages on port 67. The system rewrites packets received from the client and forwards them via unicast to the DHCP servers;...
  • Page 257: Configure The System To Be A Dhcp Client

    The switch can obtain a dynamically assigned IP address from a DHCP server. A start-up configuration is not received. Use bare metal provisioning (BMP) to receive configuration parameters (Dell Networking OS version and a configuration file). BMP is enabled as a factory-default setting on a switch.
  • Page 258: Dhcp Client On A Management Interface

    DHCP Client Operation with Other Features The DHCP client operates with other Dell Networking OS features, as the following describes. Stacking The DHCP client daemon runs only on the master unit and handles all DHCP packet transactions. It periodically synchronizes the lease file with the standby unit.
  • Page 259: Configure The System For User Port Stacking (Option 230)

    • If you enable DHCP snooping globally on a switch and you enable a DHCP client on an interface, the trust port, source MAC address, and snooping table validations are not performed on the interface by DHCP snooping for packets destined to the DHCP client daemon. The following criteria determine packets destined for the DHCP client: –...
  • Page 260: Option 82

    Option 82 RFC 3046 (the relay agent information option, or Option 82) is used for class-based IP address assignment. The code for the relay agent information option is 82, and is comprised of two sub-options, circuit ID and remote ID. Circuit ID This is the interface on which the client-originated message is received.
  • Page 261 OS version 8.2.1.0 extends DHCP snooping to Layer 2 and you do not have to enable relay agent to snoop on Layer 2 interfaces. Dell Networking OS Behavior: Binding table entries are deleted when a lease expires or when the relay agent encounters a DHCPRELEASE. Line cards maintain a list of snooped VLANs. When the binding table is exhausted, DHCP packets are dropped on snooped VLANs, while these packets are forwarded across non-snooped VLANs.
  • Page 262 Delete all of the entries in the binding table. EXEC Privilege mode clear ipv6 dhcp snooping binding Dell# clear ipv6 dhcp snooping? binding Clear the snooping binding database Displaying the Contents of the Binding Table To display the contents of the binding table, use the following command.
  • Page 263 Example of the show ipv6 dhcp snooping binding Command View the DHCP snooping statistics with the show ipv6 dhcp snooping command. Dell#show ipv6 dhcp snooping binding Codes : S - Static D – Dynamic IPv6 Address...
  • Page 264: Drop Dhcp Packets On Snooped Vlans Only

    To view the number of entries in the table, use the show ip dhcp snooping binding command. This output displays the snooping binding table created using the ACK packets from the trusted port. Dell#show ip dhcp snooping binding Codes : S - Static D - Dynamic...
  • Page 265: Configuring Dynamic Arp Inspection

    Validate ARP frames against the DHCP snooping binding table. INTERFACE VLAN mode arp inspection Examples of Viewing the ARP Database and Packets To view entries in the ARP database, use the show arp inspection database command. Dell#show arp inspection database Protocol Address Age(min) Hardware Address Interface VLAN...
  • Page 266: Source Address Validation

    Layer 3 only. However, Dell Networking OS version 8.2.1.1 extends DAI to Layer 2. Source Address Validation Using the DHCP binding table, Dell Networking OS can perform three types of source address validation (SAV). Table 13. Three Types of Source Address Validation...
  • Page 267: Enabling Ip Source Address Validation

    DHCP MAC source address validation (SAV) validates a DHCP packet’s source hardware address against the client hardware address field (CHADDR) in the payload. Dell Networking OS ensures that the packet’s source MAC address is checked against the CHADDR field in the DHCP header only for packets from snooped VLANs.
  • Page 268: Viewing The Number Of Sav Dropped Packets

    INTERFACE mode ip dhcp source-address-validation ipmac vlan vlan-id Dell Networking OS creates an ACL entry for each IP+MAC address pair and optionally with its VLAN ID in the binding table and applies it to the interface. To display the IP+MAC ACL for an interface for the entire system, use the show ip dhcp snooping source-address-validation [interface] command in EXEC Privilege mode.
  • Page 269: Clearing The Number Of Sav Dropped Packets

    To clear the number of SAV dropped packets, use the clear ip dhcp snooping source-address- validation discard-counters command. Dell>clear ip dhcp snooping source-address-validation discard-counters To clear the number of SAV dropped packets on a particular interface, use the clear ip dhcp snooping source-address-validation discard-counters interface interface command.
  • Page 270: Equal Cost Multi-Path (Ecmp)

    0 lag checksum 0 nh-ecmp checksum 0 Dell Networking OS Behavior: In the Dell Networking OS versions prior to 8.2.1.2, the ExaScale default hash-algorithm is 0. Beginning with Dell Networking OS version 8.2.1.2, the default hash-algorithm is 24.
  • Page 271: Configuring The Hash Algorithm Seed

    This behavior means that for a given flow, even though the prefixes are sorted, two unrelated chassis can select different hops. Dell Networking OS provides a command line interface (CLI)-based solution for modifying the hash seed to ensure that on each configured system, the ECMP selection is same. When configured, the same seed is set for ECMP, LAG, and NH, and is used for incoming traffic only.
  • Page 272: Managing Ecmp Group Paths

    This is different from the ecmp-group index 2 that is created by configuring routes and is automatically generated. These two ecmp-groups are not related in any way. Example of Viewing Link Bundle Monitoring Dell# show link-bundle-distribution ecmp-group 1 Link-bundle trigger threshold - 60 ECMP bundle - 1 Utilization[In Percent] - 44 Alarm State - Active Interface...
  • Page 273: Modifying The Ecmp Group Threshold

    You can configure ecmp-group with id 2 for link bundle monitoring. This ecmp-group is different from the ecmp-group index 2 that is created by configuring routes and is automatically generated. These two ecmp-groups are not related in any way. Dell(conf-ecmp-group-5)#show config ecmp-group 5 interface tengigabitethernet 1/2...
  • Page 274: Enabling Fips Cryptography

    Enabling FIPS Cryptography This chapter describes how to enable FIPS cryptography requirements on Dell Networking platforms. This feature provides cryptographic algorithms conforming to various FIPS standards published by the National Institute of Standards and Technology (NIST), a non-regulatory agency of the US Department of Commerce.
  • Page 275: Enabling Fips Mode

    FIPS mode, generates new host-keys, and re-enables the SSH server (assuming it was enabled before enabling FIPS). For more information, refer to the SSH Server and SCP Commands section in the Security chapter of the Dell Networking OS Command Line Reference Guide. Enabling FIPS Cryptography...
  • Page 276: Monitoring Fips Mode Status

    : S4810 - 52-port GE/TE/FG (SE) Master priority : 0 Hardware Rev : 3.0 Num Ports : 64 Up Time : 7 hr, 3 min Dell Networking OS Version : 4810-8-3-7-1061 Jumbo Capable : yes POE Capable : no FIPS Mode : enabled...
  • Page 277 • New 1024–bit RSA and RSA1 host key-pairs are created. To disable FIPS mode, use the following command. • To disable FIPS mode from a console port. CONFIGURATION mode no fips mode enable The following Warning message displays: WARNING: Disabling FIPS mode will close all SSH/Telnet connections, restart those servers, and destroy all configured host keys.
  • Page 278: Force10 Resilient Ring Protocol (Frrp)

    Force10 Resilient Ring Protocol (FRRP) FRRP provides fast network convergence to Layer 2 switches interconnected in a ring topology, such as a metropolitan area network (MAN) or large campuses. FRRP is similar to what can be achieved with the spanning tree protocol (STP), though even with optimizations, STP can take up to 50 seconds to converge (depending on the size of network and node of failure) may require 4 to 5 seconds to reconverge.
  • Page 279: Ring Status

    The Member VLAN is the VLAN used to transmit data as described earlier. The Control VLAN is used to perform the health checks on the ring. The Control VLAN can always pass through all ports in the ring, including the secondary port of the Master node. Ring Status The ring failure notification and the ring status checks provide two ways to ensure the ring remains up and active in the event of a switch or port failure.
  • Page 280: Multiple Frrp Rings

    Multiple FRRP Rings Up to 255 rings are allowed per system and multiple rings can be run on one system. More than the recommended number of rings may cause interface instability. You can configure multiple rings with a single switch connection; a single ring can have multiple FRRP groups; multiple rings can be connected with a common link.
  • Page 281 Concept Explanation Control VLAN Each ring has a unique Control VLAN through which tagged ring health frames (RHF) are sent. Control VLANs are used only for sending RHF, and cannot be used for any other purpose. Member VLAN Each ring maintains a list of member VLANs. Member VLANs must be consistent across the entire ring.
  • Page 282: Implementing Frrp

    • FRRP is media and speed independent. • FRRP is a Dell proprietary protocol that does not interoperate with any other vendor. • You must disable the spanning tree protocol (STP) on both the Primary and Secondary interfaces before you can enable FRRP.
  • Page 283: Configuring The Control Vlan

    Configuring the Control VLAN Control and member VLANS are configured normally for Layer 2. Their status as control or member is determined at the FRRP group commands. For more information about configuring VLANS in Layer 2 mode, refer to Layer Be sure to follow these guidelines: •...
  • Page 284: Configuring And Adding The Member Vlans

    VLAN ID: The VLAN identification of the control VLAN. Configure the Master node. CONFIG-FRRP mode. mode master Identify the Member VLANs for this FRRP group. CONFIG-FRRP mode. member-vlan vlan-id {range} VLAN-ID, Range: VLAN IDs for the ring’s member VLANS. Enable FRRP. CONFIG-FRRP mode.
  • Page 285: Setting The Frrp Timers

    interface primary interface slot/port secondary interface slot/port control- vlan vlan id Interface: • For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information. • For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. Slot/Port, Range: Slot and Port ID for the interface.
  • Page 286: Viewing The Frrp Configuration

    EXEC PRIVELEGED mode. clear frrp Viewing the FRRP Configuration To view the configuration for the FRRP group, use the following command. • Show the configuration for this FRRP group. CONFIG-FRRP mode. show configuration Viewing the FRRP Information To view general FRRP information, use one of the following commands. •...
  • Page 287 switchport no shutdown interface TenGigabitEthernet 1/34 no ip address switchport no shutdown interface Vlan 101 no ip address tagged TenGigabitEthernet 1/24,34 no shutdown interface Vlan 201 no ip address tagged TenGigabitEthernet 1/24,34 no shutdown protocol frrp 101 interface primary TenGigabitEthernet 1/24 secondary TenGigabitEthernet 1/34 control-vlan 101 member-vlan 201 mode master...
  • Page 288 no shutdown interface Vlan 101 no ip address tagged TenGigabitEthernet 3/14,21 no shutdown interface Vlan 201 no ip address tagged TenGigabitEthernet 3/14,21 no shutdown protocol frrp 101 interface primary TenGigabitEthernet 3/21 secondary TenGigabitEthernet 3/14 control-vlan 101 member-vlan 201 mode transit no disable Force10 Resilient Ring Protocol (FRRP)
  • Page 289: Garp Vlan Registration Protocol (Gvrp)

    GARP VLAN Registration Protocol (GVRP) GARP VLAN registration protocol (GVRP) is supported on Dell Networking OS. Typical virtual local area network (VLAN) implementation involves manually configuring each Layer 2 switch that participates in a given VLAN. GVRP, defined by the IEEE 802.1q specification, is a Layer 2 network protocol that provides for automatic VLAN configuration of switches.
  • Page 290: Configure Gvrp

    GVRP information exchanged. In the following example, that type of port is referred to as a VLAN trunk port, but it is not necessary to specifically identify to the Dell Networking OS that the port is a trunk port.
  • Page 291: Enabling Gvrp Globally

    To configure GVRP globally, use the following command. • Enable GVRP for the entire switch. CONFIGURATION mode gvrp enable Example of Configuring GVRP Dell(conf)#protocol gvrp Dell(config-gvrp)#no disable Dell(config-gvrp)#show config protocol gvrp no disable Dell(config-gvrp)# To inspect the global configuration, use the show gvrp brief command.
  • Page 292: Configure A Garp Timer

    The device then restarts the LeaveAll timer to begin a new cycle. The LeaveAll timer must be greater than or equal to 5x of the Leave timer. The Dell Networking OS default is 10000ms. Example of the garp timer Command...
  • Page 293 LeaveAll Timer 5000 Dell(conf)# Dell Networking OS displays this message if an attempt is made to configure an invalid GARP timer: Dell(conf)#garp timers join 300 % Error: Leave timer should be >= 3*Join timer. GARP VLAN Registration Protocol (GVRP)
  • Page 294: Internet Group Management Protocol (Igmp)

    3376, respectively. • Dell Networking OS does not support IGMP version 3 and versions 1 or 2 on the same subnet. • IGMP on Dell Networking OS supports 95 interfaces on S4810 and S4820 and an unlimited number of groups on all other platforms.
  • Page 295 Figure 31. IGMP Messages in IP Packets Join a Multicast Group There are two ways that a host may join a multicast group: it may respond to a general query from its querier or it may send an unsolicited report to its querier. Responding to an IGMP Query The following describes how a host can join a multicast group.
  • Page 296: Igmp Version 3

    response, the querier removes the group from the list associated with forwarding port and stops forwarding traffic for that group to the subnet. IGMP Version 3 Conceptually, IGMP version 3 behaves the same as version 2. However, there are differences. •...
  • Page 297 Figure 33. IGMP Version 3–Capable Multicast Routers Address Structure Joining and Filtering Groups and Sources The following illustration shows how multicast routers maintain the group and source information from unsolicited reports. The first unsolicited report from the host indicates that it wants to receive traffic for group 224.1.1.1. The host’s second report indicates that it is only interested in traffic from group 224.1.1.1, source 10.11.1.1.
  • Page 298 Figure 34. Membership Reports: Joining and Filtering Leaving and Staying in Groups The following illustration shows how multicast routers track and refresh state changes in response to group-and-specific and general queries. Host 1 sends a message indicating it is leaving group 224.1.1.1 and that the included filter for 10.11.1.1 and 10.11.1.2 are no longer necessary.
  • Page 299: Configure Igmp

    Figure 35. Membership Queries: Leaving and Staying Configure IGMP Configuring IGMP is a two-step process. Enable multicast routing using the ip multicast-routing command. Enable a multicast routing protocol. Related Configuration Tasks • Viewing IGMP Enabled Interfaces • Selecting an IGMP Version •...
  • Page 300: Viewing Igmp Enabled Interfaces

    Dell# Selecting an IGMP Version Dell Networking OS enables IGMP version 2 by default, which supports version 1 and 2 hosts, but is not compatible with version 3 on the same subnet. If hosts require IGMP version 3, you can switch to IGMP version 3.
  • Page 301: Viewing Igmp Groups

    View both learned and statically configured IGMP groups. EXEC Privilege mode show ip igmp groups Example of the show ip igmp groups Command Dell# show ip igmp groups Total Number of Groups: 2 IGMP Connected Group Membership Group Address Interface...
  • Page 302: Adjusting The Igmp Querier Timeout Value

    INTERFACE mode ip igmp query-interval • Adjust the maximum response time. INTERFACE mode ip igmp query-max-resp-time • Adjust the last member query interval. INTERFACE mode ip igmp last-member-query-interval Adjusting the IGMP Querier Timeout Value If there is more than one multicast router on a subnet, only one is elected to be the querier, which is the router that sends queries to the subnet.
  • Page 303: Enabling Igmp Immediate-Leave

    If IGMP snooping is enabled on a PIM-enabled VLAN interface, data packets using the router as an Layer 2 hop may be dropped. To avoid this scenario, Dell Networking recommends that users enable IGMP snooping on server-facing end-point VLANs only.
  • Page 304: Removing A Group-Port Association

    • Specifying a Port as Connected to a Multicast Router • Configuring the Switch as Querier Example of ip igmp snooping enable Command Dell(conf)#ip igmp snooping enable Dell(conf)#do show running-config igmp ip igmp snooping enable Dell(conf)# Removing a Group-Port Association To configure or view the remove a group-port association feature, use the following commands.
  • Page 305: Specifying A Port As Connected To A Multicast Router

    • Configure the switch to only forward unregistered packets to ports on a VLAN that are connected to mrouter ports. CONFIGURATION mode no ip igmp snooping flood Specifying a Port as Connected to a Multicast Router To statically specify or view a port in a VLAN, use the following commands. •...
  • Page 306: Fast Convergence After Mstp Topology Changes

    The following describes the fast convergence feature. When a port transitions to the Forwarding state as a result of an STP or MSTP topology change, Dell Networking OS sends a general query out of all ports except the multicast router ports. The host sends a response to the general query and the forwarding database is updated without having to wait for the query interval to expire.
  • Page 307: Protocol Separation

    routes. If SSH is specified as a management application, SSH links to and from an unknown destination uses the management default route. Protocol Separation When you configure the application application-type command to configure a set of management applications with TCP/UDP port numbers to the OS, the following table describes the association between applications and their port numbers.
  • Page 308: Enabling And Disabling Management Egress Interface Selection

    can configure two default routes, one configured on the management port and the other on the front- end port. Two tables, namely, Egress Interface Selection routing table and default routing table, are maintained. In the preceding table, the columns Client and Server indicate that the applications can act as both a client and a server within the switch.
  • Page 309: Handling Of Management Route Configuration

    When the feature is disabled using the no management egress-interface-selection command, the following operations are performed: • All management application configuration is removed. • All routes installed in the management EIS routing table are removed. Handling of Management Route Configuration When the EIS feature is enabled, the following processing occurs: •...
  • Page 310: Handling Of Switch-Destined Traffic

    The fallback route between the management and data networks is used in such a case. At any given time, end users can access Dell Networking OS applications using either ip1 or ip2. Return Internet Group Management Protocol (IGMP)
  • Page 311: Handling Of Transit Traffic (Traffic Separation)

    traffic for such end-user-originated sessions destined to management port ip1 is handled using the EIS route lookup. Handling of Transit Traffic (Traffic Separation) This is forwarded traffic where destination IP is not an IP address configured in the switch. • Packets received on the management port with destination on the front-end port is dropped.
  • Page 312: Behavior Of Various Applications For Switch-Initiated Traffic

    This phenomenon occurs where traffic is transiting the switch. Traffic has not originated from the switch and is not terminating on the switch. • Drop the packets that are received on the front-end data port with destination on the management port.
  • Page 313: Behavior Of Various Applications For Switch-Destined Traffic

    Protocol Behavior when EIS is Enabled Behavior when EIS is Disabled EIS Behavior Default Behavior EIS Behavior Default Behavior EIS Behavior Default Behavior radius EIS Behavior Default Behavior Sflow-collector Default Behavior Snmp (SNMP Mib response and EIS Behavior Default Behavior SNMP Traps) EIS Behavior Default Behavior...
  • Page 314: Interworking Of Eis With Various Applications

    Default Behavior: Route lookup is done in the default routing table and appropriate egress port is selected. Protocol Behavior when EIS is Enabled Behavior when EIS is Disabled EIS Behavior Default Behavior http EIS Behavior Default Behavior EIS Behavior Default Behavior Snmp (snmp mib response) EIS Behavior Default Behavior...
  • Page 315: Designating A Multicast Router Interface

    To designate an interface as a multicast router interface, use the following command. Dell Networking OS also has the capability of listening in on the incoming IGMP general queries and designate those interfaces as the multicast router interface when the frames have a non-zero IP source address.
  • Page 316: Interfaces

    Interfaces This chapter describes interface types, both physical and logical, and how to configure them with Dell Networking Operating System (OS). • 10 Gigabit Ethernet / 40 Gigabit Ethernet interfaces are supported on the Z9000 platform. Basic Interface Configuration •...
  • Page 317: Interface Types

    NOTE: To end output from the system, such as the output from the show interfaces command, enter CTRL+C and Dell Networking OS returns to the command prompt. NOTE: The CLI output may be incorrectly displayed as 0 (zero) for the Rx/Tx power values. To obtain the correct power information, perform a simple network management protocol (SNMP) query.
  • Page 318 EXEC Privilege mode. In the following example, TenGigabitEthernet interface 1/6 is in Layer 3 mode because an IP address has been assigned to it and the interface’s status is operationally up. Dell#show ip interface brief Interface IP-Address...
  • Page 319: Enabling A Physical Interface

    INTERFACE mode, use the exit command or end command. You cannot delete a physical interface. Physical Interfaces The Management Ethernet interface is a single RJ-45 Fast Ethernet port on each unit of the Z9000 The interface provides dedicated management access to the system.
  • Page 320: Configuration Task List For Physical Interfaces

    • Clearing Interface Counters Overview of Layer Modes On all systems running Dell Networking OS, you can place physical interfaces, port channels, and VLANs in Layer 2 mode or Layer 3 mode. By default, VLANs are in Layer 2 mode.
  • Page 321: Configuring Layer 2 (Interface) Mode

    Example of a Basic Layer 2 Interface Configuration Dell(conf-if)#show config interface Port-channel 1 no ip address switchport no shutdown Dell(conf-if)# Configuring Layer 2 (Interface) Mode To configure an interface in Layer 2 mode, use the following commands. • Enable the interface.
  • Page 322: Configuring Layer 3 (Interface) Mode

    Information. To view IP information on an interface in Layer 3 mode, use the show ip interface command in EXEC Privilege mode. Dell>show ip int vlan 58 Vlan 58 is up, line protocol is up Internet address is 1.1.49.1/24 Broadcast address is 1.1.49.255...
  • Page 323: Important Points To Remember

    The dedicated Management interface provides management access to the system. You can configure this interface with Dell Networking OS, but the configuration options on this interface are limited. You cannot configure Gateway addresses and IP addresses if it appears in the main routing table of Dell Networking OS.
  • Page 324: Configuring Management Interfaces On The S-Series

    To display the routing table, use the show ip route command in EXEC Privilege mode. Dell#show int TenGigabitEthernet 1/1 TenGigabitEthernet 1/1 is up, line protocol is up Description: This is the Managment Interface...
  • Page 325: Vlan Interfaces

    NOTE: You cannot simultaneously use egress rate shaping and ingress rate policing on the same VLAN. Dell Networking OS supports Inter-VLAN routing (Layer 3 routing in VLANs). You can add IP addresses to VLANs and use them in routing protocols in the same manner that physical interfaces are used. For more information about configuring different routing protocols, refer to the chapters on the specific protocol.
  • Page 326: Null Interfaces

    (LAG) or port channel. A LAG is “a group of links that appear to a MAC client as if they were a single link” according to IEEE 802.3ad. In Dell Networking OS, a LAG is referred to as a port channel interface. Interfaces...
  • Page 327: Port Channel Benefits

    NOTE: If you are using either 10G ports or 40G ports, the platform supports up to 16 members per LAG. As soon as you configure a port channel, Dell Networking OS treats it like a physical interface. For example, IEEE 802.1Q tagging is maintained while the physical interface is in the port channel.
  • Page 328: 10/100/1000 Mbps Interfaces In Port Channels

    Dell Networking OS determines if the first interface specified (TenGig 1/1) is up. After it is up, the common speed of the port channel is 1000 Mb/s. Dell Networking OS disables those interfaces configured with speed 10000 Mb/s or whose speed is 10000 Mb/s as a result of auto- negotiation.
  • Page 329: Adding A Physical Interface To A Port Channel

    NOTE: Port channels can contain a mix of Gigabit Ethernet and 10/100/1000 Ethernet interfaces, but Dell Networking OS disables the interfaces that are not the same speed of the first channel member in the port channel (refer to 10/100/1000 Mbps Interfaces in Port Channels).
  • Page 330 Time since last interface status change: 04:31:57 Dell> When more than one interface is added to a Layer 2-port channel, Dell Networking OS selects one of the active interfaces in the port channel to be the primary port. The primary port replies to flooding and sends protocol data units (PDUs).
  • Page 331: Reassigning An Interface To A New Port Channel

    Each time you add or remove a channel member from a port channel, Dell Networking OS recalculates the hash algorithm for the port channel.
  • Page 332: Configuring The Minimum Oper Up Links In A Port Channel

    EXEC mode Dell(conf)# interface tengigabitethernet 1/1 Dell(conf-if-te-1/1)#switchport Dell(conf-if-te-1/1)# vlan tagged 2-5,100,4010 Dell#show interfaces switchport te 1/1 Codes: U - Untagged, T - Tagged x - Dot1x untagged, X - Dot1x tagged G - GVRP tagged, M - Trunk, H - VSN tagged...
  • Page 333: Assigning An Ip Address To A Port Channel

    Dell Networking OS allows you to modify the hashing algorithms used for flows and for fragments. The load-balance and hash-algorithm commands are available for modifying the distribution algorithms.
  • Page 334: Changing The Hash Algorithm

    For packets without a Layer 3 header, Dell Networking OS automatically uses load-balance mac source-dest-mac. Do not configure IP hashing or MAC hashing at the same time. If you configure an IP and MAC hashing scheme at the same time, the MAC hashing scheme takes precedence over the IP hashing scheme.
  • Page 335: Bulk Configuration

    [ecmp{crc16|crc16cc|crc32LSB|crc32MSB|crc-upper|dest-ip|lsb| xor1|xor2|xor4|xor8|xor16}] Example of the hash-algorithm Command Dell(conf)#hash-algorithm ecmp xor 26 lag crc 26 nh-ecmp checksum 26 Dell(conf)# The hash-algorithm command is specific to ECMP group. The default ECMP hash configuration is crc- lower. This command takes the lower 32 bits of the hash key to compute the egress port. Other options for ECMP hash-algorithms are: •...
  • Page 336: Bulk Configuration Examples

    The following is an example showing how duplicate entries are omitted from the interface-range prompt. Example of the Interface-Range Prompt for Duplicate Interfaces Dell(conf)#interface range vlan 1 , vlan 1 , vlan 3 , vlan 3 Dell(conf-if-range-vl-1,vl-3)# Dell(conf)#interface range tengigabitethernet 2/1 - 23 , tengigabitethernet 2/1...
  • Page 337: Defining Interface Range Macros

    The following example shows how to use commas to add VLAN and port-channel interfaces to the range. Example of Adding VLAN and Port-Channel Interface Ranges Dell(config-if-range-te-1/1-2)# interface range Vlan 2 – 100 , Port 1 – 25 Dell(config-if-range-te-1/1-2-so-5/1-vl-2-100-po-1-25)# no shutdown Defining Interface Range Macros You can define an interface-range macro to automatically select a range of interfaces for configuration.
  • Page 338: Define The Interface Range

    The following example shows how to define an interface-range macro named “test” to select Fast Ethernet interfaces 5/1 through 5/4. Example of the define interface-range Command for Macros Dell(config)# define interface-range test gigabitethernet 5/1 - 4 Choosing an Interface-Range Macro To use an interface-range macro, use the following command.
  • Page 339: Maintenance Using Tdr

    Dell# Maintenance Using TDR The time domain reflectometer (TDR) is supported on all Dell Networking switch/routers. TDR is an assistance tool to resolve link issues that helps detect obvious open or short conditions within any of the four copper pairs. TDR sends a signal onto the physical cable and examines the reflection of the signal that returns.
  • Page 340: Splitting Qsfp Ports To Sfp+ Ports

    – stack-unit: enter the stack member unit identifier of the stack member to reset. The range is from 0 to 11 – number: enter the port number of the 40G port to be split. The Z9000 range is from 0 to 31. Important Points to Remember •...
  • Page 341: Important Points To Remember

    Similarly, you can enable the fan-out mode to configure the QSFP port on a device to act as an SFP or SFP+ port. As the QSA enables a QSFP or QSFP+ port to be used as an SFP or SFP+ port, Dell Networking OS does not immediately detect the QSA after you insert it into a QSFP port cage.
  • Page 342: Support For Lm4 Optics

    NOTE: In the following show interfaces tengigbitethernet commands, the ports 1,2, and 3 are inactive and no physical SFP or SFP+ connection actually exists on these ports. However, Dell Networking OS still perceives these ports as valid and the output shows that pluggable media (optical cables) is inserted into these ports.
  • Page 343 5,6, and 7 are inactive and no physical SFP or SFP+ connection actually exists on these ports. However, Dell Networking OS still perceives these ports as valid and the output shows that pluggable media (optical cables) is inserted into these ports. This is a software limitation for this release.
  • Page 344 = 0.000C QSFP 0 Voltage High Alarm threshold = 0.000V QSFP 0 Bias High Alarm threshold = 0.000mA Dell#show interfaces fortyGigE 0/12 transceiver QSFP 0 Serial ID Base Fields QSFP 0 Id = 0x0d QSFP 0 Ext Id = 0x00...
  • Page 345 NOTE: In the following show inventory media command output, the port numbers 1, 2, 3, 5, 6, and 7 ports are actually inactive. However, Dell Networking OS still shows that optical cables are inserted into these ports. This is a software limitation for this release.
  • Page 346: Link Dampening

    QSFP 4x10GBASE-CR1-3M APF12420031B3P QSFP 4x10GBASE-CR1-3M APF12420031B3P QSFP 40GBASE-SR4 Link Dampening Interface state changes occur when interfaces are administratively brought up or down or if an interface state changes. Every time an interface changes a state or flaps, routing protocols are notified of the status of the routes that are affected by the change in state.
  • Page 347 The link MTU is the frame size of a packet, and the IP MTU size is used for IP fragmentation. If the system determines that the IP packet must be fragmented as it leaves the interface, Dell Networking OS divides the packet into fragments no bigger than the size set in the ip mtu command.
  • Page 348: Link Bundle Monitoring

    Using Ethernet Pause Frames for Flow Control Ethernet pause frames and threshold settings are supported on the Dell Networking OS. Ethernet Pause Frames allow for a temporary stop in data transmission. A situation may arise where a sending device may transmit data faster than a destination device can accept it.
  • Page 349: Enabling Pause Frames

    As a workaround, apply the new settings, execute shut then no shut on the interface, and then check the running-config of the port. NOTE: If you disable rx flow control, Dell Networking recommends rebooting the system. The flow control sender and receiver must be on the same port-pipe. Flow control is not supported across different port-pipes.
  • Page 350: Port-Pipes

    1400-byte IP MTU + 22-byte VLAN Tag = 1422-byte link MTU The MTU range is from 592 to 12000, with a default of 1500. IP MTU automatically configures. The following table lists the various Layer 2 overheads found in Dell Networking OS and the number of bytes.
  • Page 351: Auto-Negotiation On Ethernet Interfaces

    NOTE: As a best practice, Dell Networking recommends keeping auto-negotiation enabled. Only disable auto-negotiation on switch ports that attach to devices not capable of supporting negotiation or where connectivity issues arise from interoperability issues.
  • Page 352 NOTE: The show interfaces status command displays link status, but not administrative status. For both link and administrative status, use the show ip interface [interface | brief | linecard slot-number] [configuration] command. Dell#show interfaces status Port Description Status Speed Duplex Vlan...
  • Page 353: Set Auto-Negotiation Options

    Dell(conf-if-gi-1/1)# For details about the speed, duplex, and negotiation auto commands, refer to the Interfaces chapter of the Dell Networking OS Command Reference Guide. Adjusting the Keepalive Timer To change the time interval between keepalive messages on the interfaces, use the keepalive command.
  • Page 354: View Advanced Interface Information

    Dell#show ip interface stack-unit 1 configured Dell#show ip interface tengigabitEthernet 1 configured Dell#show ip interface br configured Dell#show ip interface br stack-unit 1 configured Dell#show ip interface br tengigabitEthernet 1 configured Dell#show running-config interfaces configured Dell#show running-config interface tengigabitEthernet 1 configured In EXEC mode, the show interfaces switchport command displays only interfaces in Layer 2 mode and their relevant configuration information.
  • Page 355 Input 00.00 Mbits/sec, 0 packets/sec, 0.00% of line-rate Output 00.00 Mbits/sec, 0 packets/sec, 0.00% of line-rate Time since last interface status change: 1d23h40m Dell(conf)#interface tengigabitethernet 1/1 Dell(conf-if-te-1/1)#rate-interval 100 Dell#show interfaces TenGigabitEthernet 1/1 is down, line protocol is down Hardware is Force10Eth, address is 00:01:e8:01:9e:d9...
  • Page 356: Dynamic Counters

    Dynamic Counters By default, counting is enabled for IPFLOW, IPACL, L2ACL, L2FIB. For the remaining applications, Dell Networking OS automatically turns on counting when you enable the application, and is turned off when you disable the application. NOTE: If you enable more than four counter-dependent applications on a port pipe, there is an impact on line rate performance.
  • Page 357: Enhanced Validation Of Interface Ranges

    – (OPTIONAL) To clear unknown source address (SA) drop counters when you configure the MAC learning limit on the interface, enter the keywords learning-limit. Example of the clear counters Command When you enter this command, confirm that you want Dell Networking OS to clear the interface counters for that interface. Dell#clear counters te 1/1...
  • Page 358: Internet Protocol Security (Ipsec)

    Internet Protocol Security (IPSec) Internet protocol security (IPSec) is available on Dell Networking OS. IPSec is an end-to-end security scheme for protecting IP communications by authenticating and encrypting all packets in a communication session. Use IPSec between hosts, between gateways, or between hosts and gateways.
  • Page 359: Configuring Ipsec

    Configuring IPSec The following sample configuration shows how to configure FTP and telnet for IPSec. Define the transform set. CONFIGURATION mode crypto ipsec transform-set myXform-seta esp-authentication md5 esp- encryption des Define the crypto policy. CONFIGURATION mode crypto ipsec policy myCryptoPolicy 10 ipsec-manual transform-set myXform-set session-key inbound esp 256 auth <key>...
  • Page 360: Ipv4 Routing

    For more information about IP addressing, refer to RFC 791, Internet Protocol. Implementation Information In Dell Networking OS, you can configure any IP address as a static route except IP addresses already assigned to interfaces. NOTE: Dell Networking OS supports 31-bit subnet masks (/31, or 255.255.255.254) as defined by RFC 3021.
  • Page 361: Assigning Ip Addresses To An Interface

    [VLAN] or port channel) interfaces to enable IP communication between the system and hosts connected to that interface. In Dell Networking OS, you can assign one primary address and up to 255 secondary IP addresses to each interface. Enter the keyword interface then the type of interface and slot/port information.
  • Page 362: Configuring Static Routes

    – tag tag-value: the range is from 1 to 4294967295. (optional) Example of the show ip route static Command To view the configured routes, use the show ip route static command. Dell#show ip route static Destination Gateway Dist/Metric Last Change...
  • Page 363 Direct, Lo 0 --More-- Dell Networking OS installs a next hop that is on the directly connected subnet of current IP address on the interface (for example, if interface TenGigabitEthernet 1/1 is on 172.31.5.0 subnet, Dell Networking OS installs the static route).
  • Page 364: Configure Static Routes For The Management Interface

    2.2.2.0 and if 172.31.5.43 recursively resolves to 2.2.2.0, Dell Networking OS installs the static route. • When the interface goes down, Dell Networking OS withdraws the route. • When the interface comes up, Dell Networking OS re-installs the route.
  • Page 365: Using The Configured Source Ip Address In Icmp Messages

    Using the Configured Source IP Address in ICMP Messages This feature is supported on the Z9000 platform. ICMP error or unreachable messages are now sent with the configured IP address of the source interface instead of the front-end port IP address as the source IP address. Enable the generation of ICMP unreachable messages through the ip unreachable command in Interface mode.
  • Page 366: Configuring The Duration To Establish A Tcp Connection

    Dell>show ip tcp reduced-syn-ack-wait Enabling Directed Broadcast By default, Dell Networking OS drops directed broadcast packets destined for an interface. This default setting provides some protection against denial of service (DoS) attacks. To enable Dell Networking OS to receive directed broadcasts, use the following command.
  • Page 367: Resolution Of Host Names

    The order you entered the servers determines the order of their use. Example of the show hosts Command To view current bindings, use the show hosts command. Dell>show host Default domain is force10networks.com Name/address lookup uses domain service Name servers are not set...
  • Page 368: Specifying The Local System Domain And A List Of Domains

    Specifying the Local System Domain and a List of Domains If you enter a partial domain, Dell Networking OS can search different domains to finish or fully qualify that partial domain. A fully qualified domain name (FQDN) is any name that is terminated with a period/dot. Dell Networking OS searches the host table first to resolve the partial domain.
  • Page 369: Arp

    For more information about ARP, refer to RFC 826, An Ethernet Address Resolution Protocol. In Dell Networking OS, Proxy ARP enables hosts with knowledge of the network to accept and forward packets from hosts that contain no knowledge of the network. Proxy ARP makes it possible for hosts to be ignorant of the network, including subnetting.
  • Page 370: Configuring Static Arp Entries

    These entries do not age and can only be removed manually. To remove a static ARP entry, use the no arp ip-address command. To view the static entries in the ARP cache, use the show arp static command in EXEC privilege mode. Dell#show arp Protocol Address Age(min) Hardware Address...
  • Page 371: Arp Learning Via Gratuitous Arp

    Gratuitous ARP can mean an ARP request or reply. In the context of ARP learning via gratuitous ARP on Dell Networking OS, the gratuitous ARP is a request. A gratuitous ARP request is an ARP request that is not needed according to the ARP specification, but one that hosts may send to: •...
  • Page 372: Arp Learning Via Arp Request

    Configuring ARP Retries In Dell Networking OS versions prior to 8.3.1.0, the number of ARP retries is set to five and is not configurable. After five retries, Dell Networking OS backs off for 20 seconds before it sends a new request.
  • Page 373: Icmp

    The following lists the configuration tasks for ICMP. • Enabling ICMP Unreachable Messages For a complete listing of all commands related to ICMP, refer to the Dell Networking OS Command Line Reference Guide. Enabling ICMP Unreachable Messages By default, ICMP unreachable messages are disabled.
  • Page 374: Udp Helper

    IP address of packets to match those addresses. Configure UDP Helper Configuring Dell Networking OS to direct UDP broadcast is a two-step process: Enable UDP helper and specify the UDP ports for which traffic is forwarded. Refer to Enabling UDP Helper.
  • Page 375: Configuring A Broadcast Address

    When you enable UDP helper and the destination IP address of an incoming packet is a broadcast address, Dell Networking OS suppresses the destination address of the packet. The following sections describe various configurations that employ UDP helper to direct broadcasts.
  • Page 376: Udp Helper With Broadcast-All Addresses

    UDP Helper with Broadcast-All Addresses When the destination IP address of an incoming packet is the IP broadcast address, Dell Networking OS rewrites the address to match the configured broadcast address. In the following illustration: Packet 1 is dropped at ingress if you did not configure UDP helper address.
  • Page 377: Udp Helper With Configured Broadcast Addresses

    Packet 2 is sent from the host on VLAN 101. It has a broadcast MAC address and a destination IP address of 1.1.1.255. In this case, it is flooded on VLAN 101 in its original condition as the forwarding process is Layer 2.
  • Page 378: Udp Helper With No Configured Broadcast Addresses

    To display debugging information for troubleshooting, use the debug ip udp-helper command. Example of the debug ip udp-helper Command Dell(conf)# debug ip udp-helper 01:20:22: Pkt rcvd on Te 5/1 with IP DA (0xffffffff) will be sent on Te 5/2 Te 5/3 Vlan 3 01:44:54: Pkt rcvd on Te 7/1 is handed over for DHCP processing.
  • Page 379: Ipv6 Routing

    IPv6 will eventually replace IPv4 usage to allow for the constant expansion. This chapter provides a brief description of the differences between IPv4 and IPv6, and the Dell Networking support of IPv6. This chapter is not intended to be a comprehensive description of IPv6.
  • Page 380: Ipv6 Headers

    (DHCP) servers via stateful auto-configuration. NOTE: Dell Networking OS provides the flexibility to add prefixes on Router Advertisements (RA) to advertise responses to Router Solicitations (RS). By default, RA response messages are sent when an RS message is received.
  • Page 381: Ipv6 Header Fields

    IPv6 Header Fields The 40 bytes of the IPv6 header are ordered, as shown in the following illustration. Figure 41. IPv6 Header Fields Version (4 bits) The Version field always contains the number 6, referring to the packet’s IP version. Traffic Class (8 bits) The Traffic Class field deals with any data that needs special handling.
  • Page 382: Extension Header Fields

    The following lists the Next Header field values. Value Description Hop-by-Hop option header IPv4 Exterior Gateway Protocol (EGP) IPv6 Routing header Fragmentation header Encrypted Security Authentication header No Next Header Destinations option header NOTE: This table is not a comprehensive list of Next Header field values. For a complete and current listing, refer to the Internet Assigned Numbers Authority (IANA) web page at .
  • Page 383: Addressing

    However, if the Destination Address is a Hop-by-Hop options header, the Extension header is examined by every forwarding router along the packet’s route. The Hop-by-Hop options header must immediately follow the IPv6 header, and is noted by the value 0 (zero) in the Next Header field. Extension headers are processed in the order in which they appear in the packet header.
  • Page 384 of double colons is supported in a single address. Any number of consecutive 0000 groups may be reduced to two colons, as long as there is only one double colon used in an address. Leading and/or trailing zeros in a group can also be omitted (as in ::1 for localhost, 1:: for network addresses and :: for unspecified addresses).
  • Page 385: Implementing Ipv6 With Dell Networking Os

    Implementing IPv6 with Dell Networking OS Dell Networking OS supports both IPv4 and IPv6 and both may be used simultaneously in your system. The following table lists the Dell Networking OS version in which an IPv6 feature became available for each platform.
  • Page 386 Documentation and Functionality Release Introduction Chapter Location Z9000 IS-IS for IPv6 8.3.11 Intermediate System to Intermediate System IPv6 IS-IS in the Dell Networking OS Command Line Reference Guide. IS-IS for IPv6 support for 8.3.11 Intermediate System to redistribution Intermediate System...
  • Page 387: Icmpv6

    ICMP for IPv6 combines the roles of ICMP, IGMP and ARP in IPv4. Like IPv4, it provides functions for reporting delivery and forwarding errors, and provides a simple echo service for troubleshooting. The Dell Networking OS implementation of ICMPv6 is based on RFC 4443.
  • Page 388: Ipv6 Neighbor Discovery

    IPv6 device to determine the relationship of the neighboring node. NOTE: To avoid problems with network discovery, Dell Networking recommends configuring the static route last or assigning an IPv6 address to the interface and assigning an address to the peer (the forwarding router’s address) less than 10 seconds apart.
  • Page 389: Ipv6 Neighbor Discovery Of Mtu Packets

    Figure 43. NDP Router Redirect IPv6 Neighbor Discovery of MTU Packets You can set the MTU advertised through the RA packets to incoming routers, without altering the actual MTU setting on the interface. The ipv6 nd mtu command sets the value advertised to routers. It does not set the actual MTU rate. For example, if you set ipv6 nd mtu to 1280, the interface still passes 1500-byte packets, if that is what is set with the mtu command.
  • Page 390: Debugging Ipv6 Rdnss Information Sent To The Host

    Dell(conf-if-te-1/1)#do debug ipv6 nd tengigabitethernet 1/1 ICMPv6 Neighbor Discovery packet debugging is on for tengigabitethernet 1/1 Dell(conf-if-te-1/1)#00:13:02 : : cp-ICMPV6-ND: Sending RA on Te 1/1 current hop limit=64, flags: M-, O-, router lifetime=1800 sec, reachable time=0 ms, retransmit time=0 ms...
  • Page 391: Displaying Ipv6 Rdnss Information

    Secure Shell (SSH) Over an IPv6 Transport Dell Networking OS supports both inbound and outbound SSH sessions using IPv6 addressing. Inbound SSH supports accessing the system through the management interface as well as through a physical Layer 3 interface.
  • Page 392: Configuration Tasks For Ipv6

    For SSH configuration details, refer to the Security chapter in the Dell Networking OS Command Line Interface Reference Guide. Configuration Tasks for IPv6 The following are configuration tasks for the IPv6 protocol. • Adjusting Your CAM-Profile • Assigning an IPv6 Address to an Interface •...
  • Page 393: Assigning An Ipv6 Address To An Interface

    Assigning an IPv6 Address to an Interface Essentially, IPv6 is enabled in Dell Networking OS simply by assigning IPv6 addresses to individual router interfaces. You can use IPv6 and IPv4 together on a system, but be sure to differentiate that usage carefully.
  • Page 394: Configuring Telnet With Ipv6

    – For a VLAN interface, enter the keyword vlan then a number from 1 to 4094. Configuring Telnet with IPv6 The Telnet client and server in Dell Networking OS supports IPv6 connections. You can establish a Telnet session directly to the router using an IPv6 Telnet client, or you can initiate an IPv6 Telnet connection from the router.
  • Page 395: Showing An Ipv6 Interface

    – For a port channel interface, enter the keywords port-channel then a number. – For a VLAN interface, enter the keyword vlan then a number from 1 to 4094. Example of the show ipv6 interface Command Dell#show ipv6 int ManagementEthernet 1/1 ManagementEthernet 1/1 is up, line protocol is up IPV6 is enabled...
  • Page 396: Showing Ipv6 Routes

    – To display information about an IPv6 Prefix lists, enter list and the prefix-list name. Examples of the show ipv6 route Commands The following example shows the show ipv6 route summary command. Dell#show ipv6 route summary Route Source Active Routes Non-active Routes connected 5 0...
  • Page 397: Showing The Running-Configuration For An Interface

    – For the Management interface on the stack-unit, enter the keyword ManagementEthernet then the slot/port information. The slot range is from 0 to 1. The port range is 0. Example of the show running-config interface Command Dell#show run int Te 2/2 interface TenGigabitEthernet 2/2 no ip address...
  • Page 398: Configuring Ipv6 Ra Guard

    NOTE: IPv6 addresses are normally written as eight groups of four hexadecimal digits, where each group is separated by a colon (:). Omitting zeros is accepted as described in Addressing. Configuring IPv6 RA Guard The IPv6 Router Advertisement (RA) guard allows you to block or reject the unwanted router advertisement guard messages that arrive at the network device platform.
  • Page 399 The retransmission time range is from 100 to 4,294,967,295 milliseconds. 15. Display the configurations applied on the RA guard policy mode. POLICY LIST CONFIGURATION mode show config Example of the show config Command Dell(conf-ra_guard_policy_list)#show config ipv6 nd ra-guard policy test device-role router hop-limit maximum 251 mtu 1350...
  • Page 400: Configuring Ipv6 Ra Guard On An Interface

    [interface_type slot/port | count value] The count range is from 1 to 65534. The default is infinity. For a complete listing of all commands related to IPv6 RA Guard, refer to Dell Networking OS Command Line Reference Guide.
  • Page 401: Intermediate System To Intermediate System

    IS-IS is supported on the Z9000 with Dell Networking OS 9.0(0.0). • • The IS-IS protocol is an interior gateway protocol (IGP) that uses a shortest-path-first algorithm. Dell Networking supports both IPv4 and IPv6 versions of IS-IS. • The IS-IS protocol standards are listed in the Standards Compliance chapter.
  • Page 402: Multi-Topology Is-Is

    The NET length is variable, with a maximum of 20 bytes and a minimum of 8 bytes. It is composed of the following: • area address — within your routing domain or area, each area must have a unique area value. The first byte is called the authority and format indicator (AFI).
  • Page 403: Transition Mode

    Transition Mode All routers in the area or domain must use the same type of IPv6 support, either single-topology or multi- topology. A router operating in multi-topology mode does not recognize the ability of the single- topology mode router to support IPv6 traffic, which leads to holes in the IPv6 topology. While in Transition mode, both types of TLVs (single-topology and multi-topology) are sent in LSPs for all configured IPv6 addresses, but the router continues to operate in single-topology mode (that is, the topological restrictions of the single-topology mode remain in effect).
  • Page 404: Timers

    By default, Dell Networking OS supports dynamic host name exchange to assist with troubleshooting and configuration. By assigning a name to an IS-IS NET address, you can track IS-IS information on that address easier. Dell Networking OS does not support ISO CLNS routing; however, the ISO NET format is supported for addressing.
  • Page 405: Configuration Information

    • Accepts external IPv6 information and advertises this information in the PDUs. The following table lists the default IS-IS values. Table 17. IS-IS Default Values IS-IS Parameter Default Value Complete sequence number PDU (CSNP) interval 10 seconds IS-to-IS hello PDU interval 10 seconds IS-IS interface metric Metric style...
  • Page 406 Enabling IS-IS By default, IS-IS is not enabled. The system supports one instance of IS-IS. To enable IS-IS globally, create an IS-IS routing process and assign a NET address. To exchange protocol information with neighbors, enable IS-IS on an interface, instead of on a network as with other routing protocols.
  • Page 407 ROUTER ISIS mode. To view the IS-IS configuration, enter the show isis protocol command in EXEC Privilege mode or the show config command in ROUTER ISIS mode. Dell#show isis protocol IS-IS Router: <Null Tag> System Id: EEEE.EEEE.EEEE IS-Type: level-1-2 Manual area address(es): 47.0004.004d.0001...
  • Page 408 IS-IS: LSP authentication failures : 0 Dell# You can assign more NET addresses, but the System ID portion of the NET address must remain the same. Dell Networking OS supports up to six area addresses. Some address considerations are: •...
  • Page 409 ROUTER ISIS AF IPV6 mode isis ipv6 metric metric-value [level-1 | level-2 | level-1-2] To configure wide or wide transition metric style, the cost can be between 0 and 16,777,215. Configuring IS-IS Graceful Restart To enable IS-IS graceful restart globally, use the following commands. Additionally, you can implement optional commands to enable the graceful restart settings.
  • Page 410 Dell# To view all interfaces configured with IS-IS routing along with the defaults, use the show isis interface command in EXEC Privilege mode. Dell#show isis interface TenGigabitEthernet 1/34 TenGigabitEthernet 1/34 is up, line protocol is up MTU 1497, Encapsulation SAP...
  • Page 411 Next IS-IS LAN Level-2 Hello in 6 seconds LSP Interval: 33 Restart Capable Neighbors: 2, In Start: 0, In Restart: 0 Dell# Changing LSP Attributes IS-IS routers flood link state PDUs (LSPs) to exchange routing information. LSP attributes include the generation interval, maximum transmission unit (MTU) or size, and the refresh interval.
  • Page 412 16,777,215. Dell Networking OS supports five different metric styles: narrow, wide, transition, narrow transition, and wide transition. By default, Dell Networking OS generates and receives narrow metric values. Matrixes or costs higher than 63 are not supported. To accept or generate routes with a higher metric, you must change the metric style of the IS-IS process.
  • Page 413 To view which metric types are generated and received, use the show isis protocol command in EXEC Privilege mode. The IS-IS matrixes settings are in bold. Example of Viewing IS-IS Metric Types Dell#show isis protocol IS-IS Router: <Null Tag> System Id: EEEE.EEEE.EEEE IS-Type: level-1-2 Manual area address(es): 47.0004.004d.0001...
  • Page 414: Configuring The Distance Of A Route

    The default is Level 1-2 router. When the IS-type is Level 1-2, the software maintains two Link State databases, one for each level. To view the Link State databases, use the show isis database command. Dell#show isis database IS-IS Level-1 Link State Database LSPID...
  • Page 415 Prefix lists are applied to incoming or outgoing routes and routes must meet the conditions of the prefix lists or Dell Networking OS does not install the route in the routing table. The prefix lists are globally applied on all interfaces running IS-IS.
  • Page 416 – For a port channel interface, enter the keywords port-channel then a number. – For a VLAN interface, enter the keyword vlan then a number from 1 to 4094. • Apply a configured prefix list to all outgoing IPv4 IS-IS routes. ROUTER ISIS mode distribute-list prefix-list-name out [bgp as-number | connected | ospf process-id | rip | static]...
  • Page 417: Redistributing Ipv4 Routes

    – static: for user-configured routes. – bgp: for BGP routes only. • Deny RTM download for pre-existing redistributed IPv6 routes. ROUTER ISIS-AF IPV6 mode distribute-list redistributed-override in Redistributing IPv4 Routes In addition to filtering routes, you can add routes from other routing instances or protocols to the IS-IS process.
  • Page 418: Redistributing Ipv6 Routes

    Redistributing IPv6 Routes To add routes from other routing instances or protocols, use the following commands. NOTE: These commands apply to IPv6 IS-IS only. To apply prefix lists to IPv4 routes, use the ROUTER ISIS mode previously shown. • Include BGP, directly connected, RIP, or user-configured (static) routes in IS-IS. ROUTER ISIS mode redistribute {bgp as-number | connected | rip | static} [level-1 level-1-2 | level-2] [metric metric-value] [metric-type {external | internal}] [route-map...
  • Page 419: Setting The Overload Bit

    Another use for the overload bit is to prevent other routers from using this router as an intermediate hop in their shortest path first (SPF) calculations. For example, if the IS-IS routing database is out of memory and cannot accept new LSPs, Dell Networking OS sets the overload bit and IS-IS traffic continues to transit the system.
  • Page 420: Debugging Is-Is

    0x2E7F 1099 0/0/0 Force10.00-00 0x00000004 0xCDA9 1093 0/0/0 Dell# Debugging IS-IS To debug IS-IS processes, use the following commands. • View all IS-IS information. EXEC Privilege mode debug isis • View information on all adjacency-related activity (for example, hello packets that are sent and received).
  • Page 421: Is-Is Metric Styles

    – interface: Enter the type of interface and slot/port information to view IS-IS information on that interface only. Dell Networking OS displays debug messages on the console. To view which debugging commands are enabled, use the show debugging command in EXEC Privilege mode.
  • Page 422: Maximum Values In The Routing Table

    Maximum Values in the Routing Table IS-IS metric styles support different cost ranges for the route. The cost range for the narrow metric style is 0 to 1023, while all other metric styles support a range of 0 to 0xFE000000. Change the IS-IS Metric Style in One Level Only By default, the IS-IS metric style is narrow.
  • Page 423: Leaks From One Level To Another

    Beginning Metric Style Final Metric Style Resulting IS-IS Metric Value narrow transition narrow original value narrow transition wide transition original value narrow transition transition original value wide transition wide original value wide transition narrow default value (10) if the original value is greater than 63.
  • Page 424: Sample Configurations

    The following example shows the response from the router: Dell#clear isis * % ISIS not enabled. Dell#clear isis 9999 * You can configure IPv6 IS-IS routes in one of the following three different methods: • Congruent Topology — You must configure both IPv4 and IPv6 addresses on the interface. Enable the ip router isis and ipv6 router isis commands on the interface.
  • Page 425 Dell(conf-if-te-3/17)#show config interface TenGigabitEthernet 3/17 ip address 24.3.1.1/24 ipv6 address 24:3::1/76 ip router isis ipv6 router isis no shutdown Dell (conf-if-te-3/17)# Dell (conf-router_isis)#show config router isis metric-style wide level-1 metric-style wide level-2 net 34.0000.0000.AAAA.00 Dell (conf-router_isis)# Intermediate System to Intermediate System...
  • Page 426 Dell (conf-if-te-3/17)#show config interface TenGigabitEthernet 3/17 ipv6 address 24:3::1/76 ipv6 router isis no shutdown Dell (conf-if-te-3/17)# Dell (conf-router_isis)#show config router isis net 34.0000.0000.AAAA.00 address-family ipv6 unicast multi-topology exit-address-family Dell (conf-router_isis)# Dell (conf-if-te-3/17)#show config interface TenGigabitEthernet 3/17 ipv6 address 24:3::1/76 ipv6 router isis...
  • Page 427: Link Aggregation Control Protocol (Lacp)

    Link aggregation control protocol (LACP) is supported on Dell Networking OS. Introduction to Dynamic LAGs and LACP A link aggregation group (LAG), referred to as a port channel by Dell Networking OS, can provide both load-sharing and port redundancy across line cards. You can enable LAGs as static or dynamic.
  • Page 428: Lacp Modes

    You can configure a maximum of 128 port-channels with up to 16 members per channel. LACP Modes Dell Networking OS provides three modes for configuration of LACP — Off, Active, and Passive. • Off — In this state, an interface is not capable of being part of a dynamic LAG. LACP does not run on any port that is configured to be in this state.
  • Page 429: Lacp Configuration Tasks

    Create a dynamic port channel (LAG). CONFIGURATION mode switchport Example of Configuring a LAG Interface Dell(conf)#interface port-channel 32 Dell(conf-if-po-32)#no shutdown Dell(conf-if-po-32)#switchport The LAG is in the default VLAN. To place the LAG into a non-default VLAN, use the tagged command on the LAG.
  • Page 430: Configuring The Lag Interfaces As Dynamic

    Configure the dynamic LAG interfaces. CONFIGURATION mode port-channel-protocol lacp Example of the port-channel-protocol lacp Command Dell(conf)#interface Gigabitethernet 3/15 Dell(conf-if-gi-3/15)#no shutdown Dell(conf-if-gi-3/15)#port-channel-protocol lacp Dell(conf-if-gi-3/15-lacp)#port-channel 32 mode active Dell(conf)#interface Gigabitethernet 3/16 Dell(conf-if-gi-3/16)#no shutdown Dell(conf-if-gi-3/16)#port-channel-protocol lacp Dell(conf-if-gi-3/16-lacp)#port-channel 32 mode active Dell(conf)#interface Gigabitethernet 4/15 Dell(conf-if-gi-4/15)#no shutdown...
  • Page 431: Monitoring And Debugging Lacp

    Dell(conf-if-po-32)#switchport Dell(conf-if-po-32)#lacp long-timeout Dell(conf-if-po-32)#end Dell# show lacp 32 Port-channel 32 admin up, oper up, mode lacp Actor System ID: Priority 32768, Address 0001.e800.a12b Partner System ID: Priority 32768, Address 0001.e801.45a5 Actor Admin Key 1, Oper Key 1, Partner Oper Key 1...
  • Page 432: Configuring Shared Lag State Tracking

    Figure 46. Shared LAG State Tracking To avoid packet loss, redirect traffic through the next lowest-cost link (R3 to R4). Dell Networking OS has the ability to bring LAG 2 down if LAG 1 fails, so that traffic can be redirected. This redirection is what is meant by shared LAG state tracking.
  • Page 433: Important Points About Shared Lag State Tracking

    2d1h45m: %RPM0-P:CP %IFMGR-5-OSTATE_DN: Changed interface state to down: Po 2 To view the status of a failover group member, use the show interface port-channel command. Dell#show interface port-channel 2 Port-channel 2 is up, line protocol is down (Failover-group 1 is down)
  • Page 434: Lacp Basic Configuration Example

    • If a LAG that is part of a failover group is deleted, the failover group is deleted. • If a LAG moves to the Down state due to this feature, its members may still be in the Up state. LACP Basic Configuration Example The screenshots in this section are based on the following example topology.
  • Page 435 ARP type: ARPA, ARP Timeout 04:00:00 Last clearing of "show interface" counters 00:02:11 Queueing strategy: fifo Input statistics: 132 packets, 163668 bytes 0 Vlans 0 64-byte pkts, 12 over 64-byte pkts, 120 over 127-byte pkts 0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts 132 Multicasts, 0 Broadcasts 0 runts, 0 giants, 0 throttles 0 CRC, 0 overrun, 0 discarded...
  • Page 436 Figure 50. Inspecting Configuration of LAG 10 on ALPHA Link Aggregation Control Protocol (LACP)
  • Page 437 Figure 51. Verifying LAG 10 Status on ALPHA Using the show lacp Command Summary of the LAG Configuration on Alpha Alpha(conf-if-po-10)#int gig 2/31 Alpha(conf-if-gi-2/31)#no ip address Alpha(conf-if-gi-2/31)#no switchport Alpha(conf-if-gi-2/31)#shutdown Alpha(conf-if-gi-2/31)#port-channel-protocol lacp Alpha(conf-if-gi-2/31-lacp)#port-channel 10 mode active Alpha(conf-if-gi-2/31-lacp)#no shut Alpha(conf-if-gi-2/31)#show config interface GigabitEthernet 2/31 no ip address port-channel-protocol LACP port-channel 10 mode active...
  • Page 438 interface GigabitEthernet 2/31 no ip address Summary of the LAG Configuration on Bravo Bravo(conf-if-gi-3/21)#int port-channel 10 Bravo(conf-if-po-10)#no ip add Bravo(conf-if-po-10)#switch Bravo(conf-if-po-10)#no shut Bravo(conf-if-po-10)#show config interface Port-channel 10 no ip address switchport no shutdown Bravo(conf-if-po-10)#exit Bravo(conf)#int gig 3/21 Bravo(conf)#no ip address Bravo(conf)#no switchport Bravo(conf)#shutdown Bravo(conf-if-gi-3/21)#port-channel-protocol lacp...
  • Page 439 Figure 52. Inspecting a LAG Port on BRAVO Using the show interface Command Link Aggregation Control Protocol (LACP)
  • Page 440 Figure 53. Inspecting LAG 10 Using the show interfaces port-channel Command Link Aggregation Control Protocol (LACP)
  • Page 441: Setting Up A Threshold For Utilization Of High-Gigabit Port Channels

    Setting Up a Threshold for Utilization of High-Gigabit Port Channels This functionality is supported on the Z9000 platform. You can monitor a backplane high-Gigabit Ethernet port channel and generate a system logging message or an SNMP trap when the traffic distribution and the handled data packets on the bundle are uneven or inconsistent.
  • Page 442 To provision trunk groups on Z9000 platforms, one trunk group (hiGig link bundle) on each leaf unit is created and four trunk groups on each spine unit are created. A total of 12 trunk groups are present on the two spines and four leafs of the Z9000 platform.
  • Page 443: Guidelines For Monitoring High-Gigabit Port Channels

    NPU, and the port channel identifiers. • For Z9000, slotId (stack unitId) is constant and does not vary. NpuUnitId ranges from 0-5 and local portChannelId ranges from 0-0 for leaf NpuUnits and 0-3 for spine NpuUnits.
  • Page 444: Enabling The Verification Of Member Links Utilization In A High-Gigabit Port Channel

    Enabling the Verification of Member Links Utilization in a High-Gigabit Port Channel This procedure is supported on the Z9000 platform. To examine the working efficiency of the high-Gigabit Ethernet port channel interfaces, perform the following steps: Use the hg-link-bundle-monitor slot slotId npuUnit npuUnitId hg-port-channel portChannelId enable command in Global Configuration mode to enable this functionality to detect the working efficiency of the high-Gigabit port channel bundle interfaces.
  • Page 445 In an NPU unit, the port numbering of backplane local ports starts from the end of the last front-end local port ID used. Until Dell Networking OS Release 9.2(0.0), the show commands displayed only the details computed by the buffer statistics tracking counters for the egress queues. You can use the show hardware stack- unit <unit-num>...
  • Page 446: Layer 2

    Layer 2 Layer 2 features are supported on Dell Networking OS. Manage the MAC Address Table Dell Networking OS provides the following management activities for the MAC address table. • Clearing the MAC Address Table • Setting the Aging Time for Dynamic Entries •...
  • Page 447: Configuring A Static Mac Address

    Setting Station Move Violation Actions • Recovering from Learning Limit and Station Move Violations Dell Networking OS Behavior: When configuring the MAC learning limit on a port or VLAN, the configuration is accepted (becomes part of running-config and show mac learning-limit Layer 2...
  • Page 448: Setting The Mac Learning Limit

    Entries created before this option is set are not affected. Dell Networking OS Behavior: If you do not configure the dynamic option, the systems do not detect station moves in which a MAC address learned off of a MAC-limited port is learned on another port on same line card.
  • Page 449: Mac Learning-Limit Mac-Address-Sticky

    EXEC Privilege mode show mac learning-limit Dell Networking OS Behavior: The systems do not generate a station-move violation log entry for physical interfaces or port-channels when you configure mac learning-limit or when you configure mac learning-limit station-move-violation log. Dell Networking OS detects a station-move...
  • Page 450: Learning Limit Violation Actions

    switchport mac learning-limit 1 dynamic no-station-move mac learning-limit station-move-violation log no shutdown Learning Limit Violation Actions To configure the system to take an action when the MAC learning limit is reached on an interface and a new address is received using one the following options with the mac learning-limit command, use the following commands.
  • Page 451: Recovering From Learning Limit And Station Move Violations

    Recovering from Learning Limit and Station Move Violations After a learning-limit or station-move violation shuts down an interface, you must manually reset it. To reset the learning limit, use the following commands. NOTE: Alternatively, you can reset the interface by shutting it down using the shutdown command and then re-enabling it using the no shutdown command.
  • Page 452: Configure Redundant Pairs

    Down state until the primary fails, at which point it transitions to Up state. If the primary interface fails, and later comes up, it becomes the backup interface for the redundant pair. Dell Networking OS supports Gigabit, 10 Gigabit, and 40-Gigabit interfaces as backup interfaces.
  • Page 453 Up state. If the primary interface fails and later comes back up, it remains as the backup interface for the redundant pair. Dell Networking OS supports only Gigabit, 10 Gigabit, and 40-Gigabit ports and port channels as primary/ backup interfaces in redundant pairs. (A port channel is also referred to as a link aggregation group (LAG).
  • Page 454: Important Points About Configuring Redundant Pairs

    TenGigabitEthernet 3/42 no shutdown interface TenGigabitEthernet 3/42 no ip address switchport no shutdown Dell(conf-if-range-te-3/41-42)# Dell(conf-if-range-te-3/41-42)#do show ip int brief | find 3/41 TenGigabitEthernet 3/41 unassigned YES Manual up TenGigabitEthernet 3/42 unassigned NO Manual up down [output omitted]...
  • Page 455: Far-End Failure Detection

    00:24:55: %RPM0-P:CP %IFMGR-5-ACTIVE: Changed Vlan interface state to active: Vl 1 00:24:55: %RPM0-P:CP %IFMGR-5-STATE_STBY_ACT: Changed interface state from standby to active: Te 3/42 Dell(conf-if-te-3/41)#do show ip int brief | find 3/41 TenGigabitEthernet 3/41 unassigned NO Manual administratively down down TenGigabitEthernet 3/42...
  • Page 456: Fefd State Changes

    Figure 58. Configuring Far-End Failure Detection The report consists of several packets in SNAP format that are sent to the nearest known MAC address. In the event of a far-end failure, the device stops receiving frames and, after the specified time interval, assumes that the far-end is not available.
  • Page 457: Configuring Fefd

    You can enable FEFD globally or on a per-interface basis. Interface FEFD configurations override global FEFD configurations. • Dell Networking OS supports FEFD on physical Ethernet interfaces only, excluding the management interface. Configuring FEFD You can configure FEFD for all interfaces from CONFIGURATION mode, or on individual interfaces from INTERFACE mode.
  • Page 458: Enabling Fefd On An Interface

    Te 1/3 Normal 3 Admin Shutdown Te 1/4 Normal 3 Admin Shutdown Dell#show run fefd fefd-global mode normal fefd-global interval 3 Enabling FEFD on an Interface To enable, change, or disable FEFD on an interface, use the following commands. •...
  • Page 459: Debugging Fefd

    2w1d22h: %RPM0-P:CP %IFMGR-5-ASTATE_DN: Changed interface Admin state to down: Te 1/1 Dell(conf-if-te-1/1)#2w1d22h : FEFD state on Te 1/1 changed from ANY to Unknown 2w1d22h: %RPM0-P:CP %IFMGR-5-OSTATE_DN: Changed interface state to down: Te 1/1 2w1d22h: %RPM0-P:CP %IFMGR-5-OSTATE_DN: Changed interface state to down: Te 4/1...
  • Page 460 Sender state -- Bi-directional Sender info -- Mgmt Mac(00:01:e8:14:89:25), Slot-Port(Te 1/1) Peer info -- Mgmt Mac (00:01:e8:14:89:25), Slot-Port(Te 4/1) Sender hold time -- 3 (second) 2w1d22h : FEFD packet received on interface Te 4/1 Sender state -- Bi-directional Sender info -- Mgmt Mac(00:01:e8:14:89:25), Slot-Port(Te 1/1) Peer info -- Mgmt Mac (00:01:e8:14:89:25), Slot-Port(Te 4/1) Sender hold time -- 3 (second) An RPM Failover...
  • Page 461: Link Layer Discovery Protocol (Lldp)

    Link Layer Discovery Protocol (LLDP) The link layer discovery protocol (LLDP) is supported on Dell Networking OS. 802.1AB (LLDP) Overview LLDP — defined by IEEE 802.1AB — is a protocol that enables a local area network (LAN) device to advertise its configuration and receive configuration information from adjacent LLDP-enabled LAN infrastructure devices.
  • Page 462: Optional Tlvs

    Organizationally Specific TLVs. Figure 60. LLDPDU Frame Optional TLVs The Dell Networking OS supports these optional TLVs: management TLVs, IEEE 802.1 and 802.3 organizationally specific TLVs, and TIA-1057 organizationally specific TLVs. Management TLVs A management TLV is an optional TLVs sub-type. This kind of TLV contains essential management information about the sender.
  • Page 463 Eight TLV types have been defined by the IEEE 802.1 and 802.3 working groups as a basic part of LLDP; the IEEE OUI is 00-80-C2. You can configure the Dell Networking system to advertise any or all of these TLVs.
  • Page 464: Tia-1057 (Lldp-Med) Overview

    • LLDP-MED Network Connectivity Device — any device that provides access to an IEEE 802 LAN to an LLDP-MED endpoint device and supports IEEE 802.1AB (LLDP) and TIA-1057 (LLDP-MED). The Dell Networking system is an LLDP-MED network connectivity device. Link Layer Discovery Protocol (LLDP)
  • Page 465: Tia Organizationally Specific Tlvs

    LLDP-MED is designed for, but not limited to, VoIP endpoints. TIA Organizationally Specific TLVs The Dell Networking system is an LLDP-MED Network Connectivity Device (Device Type 4). Network connectivity devices are responsible for: • transmitting an LLDP-MED capability TLV to endpoint devices •...
  • Page 466 LLDP-MED capability (as shown in the following table). • The possible values of the LLDP-MED device type are shown in the following. The Dell Networking system is a network connectivity device, which is Type 4. When you enable LLDP-MED in Dell Networking OS (using the advertise med command), the system begins transmitting this TLV.
  • Page 467 An integer represents the application type (the Type integer shown in the following table), which indicates a device function for which a unique network policy is defined. An individual LLDP-MED network policy TLV is generated for each application type that you specify with the Dell Networking OS CLI (Advertising TLVs).
  • Page 468 NOTE: As shown in the following table, signaling is a series of control packets that are exchanged between an endpoint device and a network connectivity device to establish and maintain a connection. These signal packets might require a different network policy than the media packets for which a connection is made.
  • Page 469: Configure Lldp

    • Power Type — there are two possible power types: power source entity (PSE) or power device (PD). The Dell Networking system is a PSE, which corresponds to a value of 0, based on the TIA-1057 specification. •...
  • Page 470: Important Points To Remember

    Dell Networking systems support up to eight neighbors per interface. • Dell Networking systems support a maximum of 8000 total neighbors per system. If the number of interfaces multiplied by eight exceeds the maximum, the system does not configure more than 8000.
  • Page 471: Enabling Lldp

    Enabling LLDP LLDP is enabled by default. Enable and disable LLDP globally or per interface. If you enable LLDP globally, all UP interfaces send periodic LLDPDUs. To enable LLDP, use the following command. Enter Protocol LLDP mode. CONFIGURATION or INTERFACE mode protocol lldp Enable LLDP.
  • Page 472: Advertising Tlvs

    Enter the disable command. LLDP-MANAGEMENT-INTERFACE mode. To undo an LLDP management port configuration, precede the relevant command with the keyword no. Advertising TLVs You can configure the system to advertise TLVs out of all interfaces or out of specific interfaces. •...
  • Page 473: Viewing The Lldp Configuration

    Dell(conf-lldp)#show config protocol lldp advertise dot1-tlv port-protocol-vlan-id port-vlan-id advertise dot3-tlv max-frame-size advertise management-tlv system-capabilities system-description hello 10 no disable Dell(conf-lldp)# Dell(conf-lldp)#exit Dell(conf)#interface tengigabitethernet 1/31 Dell(conf-if-te-1/31)#show config interface TenGigabitEthernet 1/31 no ip address switchport no shutdown Dell(conf-if-te-1/31)#protocol lldp Dell(conf-if-te-1/31-lldp)#show config protocol lldp...
  • Page 474: Viewing Information Advertised By Adjacent Lldp Agents

    Information valid for next 120 seconds Time since last information change of this neighbor: 01:50:16 Remote MTU: 1554 Remote System Desc: Dell Networks Real Time Operating System Software Dell Operating System Version: 1.0. Dell Application Software Version: 9.4.0.0. Copyright (c) 1999-2014...
  • Page 475: Configuring Lldpdu Intervals

    R1(conf-lldp)# Configuring Transmit and Receive Mode After you enable LLDP, Dell Networking systems transmit and receive LLDPDUs by default. To configure the system to transmit or receive only and return to the default, use the following commands. •...
  • Page 476: Configuring A Time To Live

    • Return to the default setting. CONFIGURATION mode or INTERFACE mode no mode Example of Configuring a Single Mode R1(conf)#protocol lldp R1(conf-lldp)#show config protocol lldp advertise dot1-tlv port-protocol-vlan-id port-vlan-id advertise dot3-tlv max-frame-size advertise management-tlv system-capabilities system-description no disable R1(conf-lldp)#mode ? Rx only Tx only R1(conf-lldp)#mode tx...
  • Page 477: Debugging Lldp

    advertise dot1-tlv port-protocol-vlan-id port-vlan-id advertise dot3-tlv max-frame-size advertise management-tlv system-capabilities system-description no disable R1(conf-lldp)#multiplier ? <2-10> Multiplier (default=4) R1(conf-lldp)#multiplier 5 R1(conf-lldp)#show config protocol lldp advertise dot1-tlv port-protocol-vlan-id port-vlan-id advertise dot3-tlv max-frame-size advertise management-tlv system-capabilities system-description multiplier 5 no disable R1(conf-lldp)#no multiplier R1(conf-lldp)#show config protocol lldp advertise dot1-tlv port-protocol-vlan-id port-vlan-id...
  • Page 478: Relevant Management Objects

    Figure 66. The debug lldp detail Command — LLDPDU Packet Dissection Relevant Management Objects Dell Networking OS supports all IEEE 802.1AB MIB objects. The following tables list the objects associated with: • received and transmitted TLVs • the LLDP configuration on the local agent •...
  • Page 479 MIB Object LLDP Variable LLDP MIB Object Description Category msgTxInterval lldpMessageTxInterval Transmit Interval value. rxInfoTTL lldpRxInfoTTL Time to live for received TLVs. txInfoTTL lldpTxInfoTTL Time to live for transmitted TLVs. Basic TLV mibBasicTLVsTxEnable lldpPortConfigTLVsTxEnabl Indicates which Selection management TLVs are enabled for system ports.
  • Page 480 Table 30. LLDP System MIB Objects TLV Type TLV Name TLV Variable System LLDP MIB Object Chassis ID chassis ID subtype Local lldpLocChassisIdSub type Remote lldpRemChassisIdSu btype chassid ID Local lldpLocChassisId Remote lldpRemChassisId Port ID port subtype Local lldpLocPortIdSubtyp Remote lldpRemPortIdSubty port ID Local...
  • Page 481 TLV Type TLV Name TLV Variable System LLDP MIB Object interface numbering Local lldpLocManAddrIfSu subtype btype Remote lldpRemManAddrIfS ubtype interface number Local lldpLocManAddrIfId Remote lldpRemManAddrIfId Local lldpLocManAddrOID Remote lldpRemManAddrOI Table 31. LLDP 802.1 Organizationally specific TLV MIB Objects TLV Type TLV Name TLV Variable System...
  • Page 482 Table 32. LLDP-MED System MIB Objects TLV Sub-Type TLV Name TLV Variable System LLDP-MED MIB Object lldpXMedPortCapSu LLDP-MED LLDP-MED Local pported Capabilities Capabilities lldpXMedPortConfig TLVsTx Enable lldpXMedRemCapSu Remote pported lldpXMedRemConfig TLVsTxEnable LLDP-MED Class Local lldpXMedLocDevice Type Class Remote lldpXMedRemDevice Class Network Policy Application Type Local...
  • Page 483 TLV Sub-Type TLV Name TLV Variable System LLDP-MED MIB Object Location Identifier Location Data Local lldpXMedLocLocatio Format nSubtype Remote lldpXMedRemLocati onSubtype Location ID Data Local lldpXMedLocLocatio nInfo Remote lldpXMedRemLocati onInfo Extended Power via Power Device Type Local lldpXMedLocXPoED eviceType Remote lldpXMedRemXPoED eviceType lldpXMedLocXPoEPS...
  • Page 484: Microsoft Network Load Balancing

    Microsoft Network Load Balancing This functionality is supported on Dell Networking OS. Network Load Balancing (NLB) is a clustering functionality that is implemented by Microsoft on Windows 2000 Server and Windows Server 2003 operating systems. NLB uses a distributed methodology or pattern to equally split and balance the network traffic load across a set of servers that are part of the cluster or group.
  • Page 485: Nlb Multicast Mode Scenario

    If the active server sends a reply, the Dell switch learns the active server’s MAC address. If all servers reply, the switch registers only the last received ARP reply, and the switch learns one server’s actual MAC address;...
  • Page 486: Enable And Disable Vlan Flooding

    Configuring a Switch for NLB This functionality is supported on the Z9000 platform. To enable a switch for unicast NLB mode of functioning, perform the following steps: Enter the ip vlan-flooding command to specify that all Layer 3 unicast routed data traffic, going through a VLAN member port, needs to be flooded across all the member ports of that VLAN.
  • Page 487: Multicast Source Discovery Protocol (Msdp)

    Multicast Source Discovery Protocol (MSDP) Multicast source discovery protocol (MSDP) is supported on Dell Networking OS. Protocol Overview MSDP is a Layer 3 protocol that connects IPv4 protocol-independent multicast-sparse mode (PIM-SM) domains. A domain in the context of MSDP is a contiguous set of routers operating PIM within a common boundary defined by an exterior gateway protocol, such as border gateway protocol (BGP).
  • Page 488 Figure 67. Multicast Source Discovery Protocol (MSDP) RPs advertise each (S,G) in its domain in type, length, value (TLV) format. The total number of TLVs contained in the SA is indicated in the “Entry Count” field. SA messages are transmitted every 60 seconds, and immediately when a new source is detected.
  • Page 489: Anycast Rp

    New sources register with the backup RP. Receivers join toward the new RP and connectivity is maintained. Implementation Information The Dell Networking OS implementation of MSDP is in accordance with RFC 3618 and Anycast RP is in accordance with RFC 3446. Configure Multicast Source Discovery Protocol Configuring MSDP is a four-step process.
  • Page 490 • Accept Source-Active Messages that Fail the RFP Check • Specifying Source-Active Messages • Limiting the Source-Active Cache • Preventing MSDP from Caching a Local Source • Preventing MSDP from Caching a Remote Source • Preventing MSDP from Advertising a Local Source •...
  • Page 491 Figure 70. Configuring OSPF and BGP for MSDP Multicast Source Discovery Protocol (MSDP)
  • Page 492 Figure 71. Configuring PIM in Multiple Routing Domains Multicast Source Discovery Protocol (MSDP)
  • Page 493: Enable Msdp

    Figure 72. Configuring MSDP Enable MSDP Enable MSDP by peering RPs in different administrative domains. Enable MSDP. CONFIGURATION mode ip multicast-msdp Peer PIM systems in different administrative domains. CONFIGURATION mode ip msdp peer connect-source Multicast Source Discovery Protocol (MSDP)
  • Page 494: Manage The Source-Active Cache

    Examples of Configuring and Viewing MSDP R3_E600(conf)#ip multicast-msdp R3_E600(conf)#ip msdp peer 192.168.0.1 connect-source Loopback 0 R3_E600(conf)#do show ip msdp summary Peer Addr Local Addr State Source Up/Down Description To view details about a peer, use the show ip msdp peer command in EXEC privilege mode. Multicast sources in remote domains are stored on the RP in the source-active cache (SA cache).
  • Page 495: Limiting The Source-Active Cache

    If the total number of active sources is already larger than the limit when limiting is applied, the sources that are already in Dell Networking OS are not discarded. To enforce the limit in such a situation, use the clear ip msdp sa-cache command to clear all existing entries.
  • Page 496 Figure 73. MSDP Default Peer, Scenario 1 Multicast Source Discovery Protocol (MSDP)
  • Page 497 Figure 74. MSDP Default Peer, Scenario 2 Multicast Source Discovery Protocol (MSDP)
  • Page 498 Figure 75. MSDP Default Peer, Scenario 3 Multicast Source Discovery Protocol (MSDP)
  • Page 499: Specifying Source-Active Messages

    RPs that the ACL denies are subject to the normal RPF check. Example of the ip msdp default-peer Command and Viewing Denied Sources Dell(conf)#ip msdp peer 10.0.50.2 connect-source Vlan 50 Dell(conf)#ip msdp default-peer 10.0.50.2 list fifty Multicast Source Discovery Protocol (MSDP)
  • Page 500: Limiting The Source-Active Messages From A Peer

    Dell(conf)#ip access-list standard fifty Dell(conf)#seq 5 permit host 200.0.0.50 Dell#ip msdp sa-cache MSDP Source-Active Cache - 3 entries GroupAddr SourceAddr RPAddr LearnedFrom Expire UpTime 229.0.50.2 24.0.50.2 200.0.0.50 10.0.50.2 00:13:49 229.0.50.3 24.0.50.3 200.0.0.50 10.0.50.2 00:13:49 229.0.50.4 24.0.50.4 200.0.0.50 10.0.50.2 00:13:49 Dell#ip msdp sa-cache rejected-sa...
  • Page 501: Preventing Msdp From Caching A Remote Source

    Example of Verifying the System is not Caching Local Sources When you apply this filter, the SA cache is not affected immediately. When sources that are denied by the ACL time out, they are not refreshed. Until they time out, they continue to reside in the cache. To apply the redistribute filter to entries already present in the SA cache, first clear the SA cache.
  • Page 502: Preventing Msdp From Advertising A Local Source

    R3_E600(conf)#do show ip msdp sa-cache R3_E600(conf)# R3_E600(conf)#do show ip msdp peer Peer Addr: 192.168.0.1 Local Addr: 0.0.0.0(639) Connect Source: Lo 0 State: Listening Up/Down Time: 00:01:19 Timers: KeepAlive 30 sec, Hold time 75 sec SourceActive packet count (in/out): 0/0 SAs learned from this peer: 0 SA Filtering: Input (S,G) filter: myremotefilter Output (S,G) filter: none...
  • Page 503: Logging Changes In Peership States

    Logging Changes in Peership States To log changes in peership states, use the following command. • Log peership state changes. CONFIGURATION mode ip msdp log-adjacency-changes Terminating a Peership MSDP uses TCP as its transport protocol. In a peering relationship, the peer with the lower IP address initiates the TCP session, while the peer with the higher IP address listens on port 639.
  • Page 504: Debugging Msdp

    Example of the clear ip msdp peer Command and Verifying Statistics are Cleared R3_E600(conf)#do show ip msdp peer Peer Addr: 192.168.0.1 Local Addr: 192.168.0.3(639) Connect Source: Lo 0 State: Established Up/Down Time: 00:04:26 Timers: KeepAlive 30 sec, Hold time 75 sec SourceActive packet count (in/out): 5/0 SAs learned from this peer: 0 SA Filtering:...
  • Page 505 technique is less effective as traffic increases because preemptive load balancing requires prior knowledge of traffic distributions. • lack of scalable register decasulation: With only a single RP per group, all joins are sent to that RP regardless of the topological distance between the RP, sources, and receivers, and data is transmitted to the RP until the SPT switch threshold is reached.
  • Page 506: Configuring Anycast Rp

    Configuring Anycast RP To configure anycast RP, use the following commands. In each routing domain that has multiple RPs serving a group, create a Loopback interface on each RP serving the group with the same IP address. CONFIGURATION mode interface loopback Make this address the RP for the group.
  • Page 507 CONFIGURATION mode ip msdp originator-id Examples of R1, R2, and R3 Configuration for MSDP with Anycast RP The following example shows an R1 configuration for MSDP with Anycast RP. ip multicast-routing interface TenGigabitEthernet 1/1 ip pim sparse-mode ip address 10.11.3.1/24 no shutdown interface TenGigabitEthernet 1/2 ip address 10.11.2.1/24...
  • Page 508 no shutdown interface Loopback 0 ip pim sparse-mode ip address 192.168.0.1/32 no shutdown interface Loopback 1 ip address 192.168.0.22/32 no shutdown router ospf 1 network 10.11.1.0/24 area 0 network 10.11.4.0/24 area 0 network 192.168.0.22/32 area 0 redistribute static redistribute connected redistribute bgp 100 router bgp 100 redistribute ospf 1...
  • Page 509: Msdp Sample Configurations

    neighbor 192.168.0.22 remote-as 100 neighbor 192.168.0.22 ebgp-multihop 255 neighbor 192.168.0.22 update-source Loopback 0 neighbor 192.168.0.22 no shutdown ip multicast-msdp ip msdp peer 192.168.0.11 connect-source Loopback 0 ip msdp peer 192.168.0.22 connect-source Loopback 0 ip msdp sa-filter out 192.168.0.22 ip route 192.168.0.1/32 10.11.0.23 ip route 192.168.0.22/32 10.11.0.23 ip pim rp-address 192.168.0.3 group-address 224.0.0.0/4 ip multicast-routing...
  • Page 510 MSDP Sample Configuration: R1 Running-Config MSDP Sample Configuration: R2 Running-Config MSDP Sample Configuration: R3 Running-Config MSDP Sample Configuration: R4 Running-Config ip multicast-routing interface TenGigabitEthernet 1/1 ip pim sparse-mode ip address 10.11.3.1/24 no shutdown interface TenGigabitEthernet 1/2 ip address 10.11.2.1/24 no shutdown interface TenGigabitEthernet 1/21 ip pim sparse-mode ip address 10.11.1.12/24...
  • Page 511 network 192.168.0.2/32 area 0 redistribute static redistribute connected redistribute bgp 100 router bgp 100 redistribute ospf 1 neighbor 192.168.0.3 remote-as 200 neighbor 192.168.0.3 ebgp-multihop 255 neighbor 192.168.0.3 update-source Loopback 0 neighbor 192.168.0.3 no shutdown ip route 192.168.0.3/32 10.11.0.32 ip pim rp-address 192.168.0.1 group-address 224.0.0.0/4 ip multicast-routing interface TenGigabitEthernet 3/21 ip pim sparse-mode...
  • Page 512 interface TenGigabitEthernet 4/22 ip address 10.10.42.1/24 no shutdown interface TenGigabitEthernet 4/31 ip pim sparse-mode ip address 10.11.6.43/24 no shutdown interface Loopback 0 ip address 192.168.0.4/32 no shutdown router ospf 1 network 10.11.5.0/24 area 0 network 10.11.6.0/24 area 0 network 192.168.0.4/32 area 0 ip pim rp-address 192.168.0.3 group-address 224.0.0.0/4 Multicast Source Discovery Protocol (MSDP)
  • Page 513: Multiple Spanning Tree Protocol (Mstp)

    Multiple Spanning Tree Protocol (MSTP) Multiple spanning tree protocol (MSTP) is supported on Dell Networking OS. Protocol Overview MSTP — specified in IEEE 802.1Q-2003 — is a rapid spanning tree protocol (RSTP)-based spanning tree variation that improves on per-VLAN spanning tree plus (PVST+). MSTP allows multiple spanning tree instances and allows you to map many VLANs to one spanning tree instance to reduce the total number of required instances.
  • Page 514: Spanning Tree Variations

    Spanning Tree Variations The Dell Networking OS supports four variations of spanning tree, as shown in the following table. Table 33. Spanning Tree Variations Dell Networking Term IEEE Specification Spanning Tree Protocol (STP) 802 .1d Rapid Spanning Tree Protocol (RSTP) 802 .1w...
  • Page 515: Enable Multiple Spanning Tree Globally

    Enable MSTP. PROTOCOL MSTP mode no disable Example of Verifying MSTP is Enabled To verify that MSTP is enabled, use the show config command in PROTOCOL MSTP mode. Dell(conf)#protocol spanning-tree mstp Dell(config-mstp)#show config protocol spanning-tree mstp no disable Dell# Adding and Removing Interfaces To add and remove interfaces, use the following commands.
  • Page 516 All bridges in the MSTP region must have the same VLAN-to-instance mapping. To view which instance a VLAN is mapped to, use the show spanning-tree mst vlan command from EXEC Privilege mode. Dell(conf-mstp)#name my-mstp-region Dell(conf-mstp)#exit Dell(conf)#do show spanning-tree mst config MST region name: my-mstp-region Revision: 0 MSTI VID 1 100...
  • Page 517: Influencing Mstp Root Selection

    Dell Networking OS supports only one MSTP region. A region is a combination of three unique qualities: • Name is a mnemonic string you assign to the region. The default region name on Dell Networking OS is null. • Revision is a 2-byte number. The default revision number on Dell Networking OS is 0.
  • Page 518: Changing The Region Name Or Revision

    NOTE: Some non-Dell Networking OS equipment may implement a non-null default region name. SFTOS, for example, uses the Bridge ID, while others may use a MAC address. Changing the Region Name or Revision To change the region name or revision, use the following commands.
  • Page 519: Modifying The Interface Parameters

    The default is 15 seconds. Change the hello-time parameter. PROTOCOL MSTP mode hello-time seconds NOTE: With large configurations (especially those configurations with more ports) Dell Networking recommends increasing the hello-time. The range is from 1 to 10. The default is 2 seconds.
  • Page 520: Configuring An Edgeport

    • Port priority influences the likelihood that a port is selected to be a forwarding port in case that several ports have the same port cost. The following lists the default values for port cost by interface. Table 34. Default Values for Port Costs by Interface Port Cost Default Value 100-Mb/s Ethernet interfaces...
  • Page 521: Flush Mac Addresses After A Topology Change

    Dell(conf-if-te-3/11)# Flush MAC Addresses after a Topology Change Dell Networking OS has an optimized MAC address flush mechanism for RSTP, MSTP, and PVST+ that flushes addresses only when necessary, which allows for faster convergence during topology changes. However, you may activate the flushing mechanism defined by 802.1Q-2003 using the tc-flush- standard command, which flushes MAC addresses after every topology change notification.
  • Page 522: Router 1 Running-Configurationrouter 2 Running-Configurationrouter 3 Running-Configurationsftos Example Running-Configuration

    Figure 79. MSTP with Three VLANs Mapped to Two Spanning Tree Instances Router 1 Running-Configuration This example uses the following steps: Enable MSTP globally and set the region name and revision map MSTP instances to the VLANs. Assign Layer-2 interfaces to the MSTP topology. Create VLANs mapped to MSTP instances tag interfaces to the VLANs.
  • Page 523 no shutdown interface Vlan 300 no ip address tagged TenGigabitEthernet 1/21,31 no shutdown Router 2 Running-Configuration This example uses the following steps: Enable MSTP globally and set the region name and revision map MSTP instances to the VLANs. Assign Layer-2 interfaces to the MSTP topology. Create VLANs mapped to MSTP instances tag interfaces to the VLANs.
  • Page 524 name Tahiti revision 123 MSTI 1 VLAN 100 MSTI 2 VLAN 200,300 (Step 2) interface TenGigabitEthernet 3/11 no ip address switchport no shutdown interface TenGigabitEthernet 3/21 no ip address switchport no shutdown (Step 3) interface Vlan 100 no ip address tagged TenGigabitEthernet 3/11,21 no shutdown interface Vlan 200...
  • Page 525: Debugging And Verifying Mstp Configurations

    (Step 3) interface vlan 100 tagged 1/0/31 tagged 1/0/32 exit interface vlan 200 tagged 1/0/31 tagged 1/0/32 exit interface vlan 300 tagged 1/0/31 tagged 1/0/32 exit Debugging and Verifying MSTP Configurations To debut and verify MSTP configuration, use the following commands. •...
  • Page 526 – Are there “extra” MSTP instances in the Sending or Received logs? This may mean that an additional MSTP instance was configured on one router but not the others. The following example shows the show run spanning-tree mstp command. Dell#show run spanning-tree mstp protocol spanning-tree mstp name Tahiti...
  • Page 527 INST 2: Flags: 0x70, Reg Root: 32768:0001.e8d5.cbbd, Int Root Cost Brg/Port Prio: 32768/128, Rem Hops: 20 Multiple Spanning Tree Protocol (MSTP)
  • Page 528: Multicast Features

    CONFIGURATION mode ip multicast-routing Multicast with ECMP Dell Networking multicast uses equal-cost multi-path (ECMP) routing to load-balance multiple streams across equal cost links. When creating the shared-tree protocol independent multicast (PIM) uses routes from all configured routing protocols to select the best route to the rendezvous point (RP). If there are multiple, equal-cost paths, the PIM selects the route with the least number of currently running multicast streams.
  • Page 529: Implementation Information

    Because protocol control traffic in Dell Networking OS is redirected using the MAC address, and multicast control traffic and multicast data traffic might map to the same MAC address, Dell Networking OS might forward data traffic with certain MAC addresses to the CPU in addition to control traffic.
  • Page 530: First Packet Forwarding For Lossless Multicast

    Networking system is the RP, and has receivers for a group G, it forwards all initial multicast packets for the group based on the (*,G) entry rather than discarding them until the (S,G) entry is created, making Dell Networking systems suitable for applications sensitive to multicast packet loss.
  • Page 531 • If the limit is decreased after it is reached, Dell Networking OS does not clear the existing sessions. Entries are cleared after a timeout (you may also clear entries using clear ip mroute). NOTE: Dell Networking OS waits at least 30 seconds between stopping and starting IGMP join processing.
  • Page 532 no access list limiting Receiver 1, so both IGMP reports are accepted, and two corresponding entries are created in the routing table. Figure 81. Preventing a Host from Joining a Group Table 35. Preventing a Host from Joining a Group — Description Location Description •...
  • Page 533 Location Description • no shutdown • Interface TenGigabitEthernet 1/31 1/31 • ip pim sparse-mode • ip address 10.11.13.1/24 • no shutdown • Interface TenGigabitEthernet 2/1 • ip pim sparse-mode • ip address 10.11.1.1/24 • no shutdown • Interface TenGigabitEthernet 2/11 2/11 •...
  • Page 534 Location Description • ip igmp access-group igmpjoinfilR2G2 • no shutdown Rate Limiting IGMP Join Requests If you expect a burst of IGMP Joins, protect the IGMP process from overload by limiting that rate at which new groups can be joined. Hosts whose IGMP requests are denied will use the retry mechanism built-in to IGMP so that they’re membership is delayed rather than permanently denied.
  • Page 535 Figure 82. Preventing a Source from Transmitting to a Group Table 36. Preventing a Source from Transmitting to a Group — Description Location Description • Interface TenGigabitEthernet 1/21 1/21 • ip pim sparse-mode • ip address 10.11.12.1/24 • no shutdown 1/31 •...
  • Page 536 Location Description • no shutdown • Interface TenGigabitEthernet 2/1 • ip pim sparse-mode • ip address 10.11.1.1/24 • no shutdown • Interface TenGigabitEthernet 2/11 2/11 • ip pim sparse-mode • ip address 10.11.12.2/24 • no shutdown • Interface TenGigabitEthernet 2/31 2/31 •...
  • Page 537 To permit or deny PIM Join/Prune messages on an interface using an extended IP access list, use the following command. NOTE: Dell Networking recommends not using the ip pim join-filter command on an interface between a source and the RP router. Using this command in this scenario could cause problems with the PIM-SM source registration process resulting in excessive traffic being sent to the CPU of both the RP and PIM DR of the source.
  • Page 538: Object Tracking

    Object Tracking IPv4/IPv6 object tracking is available on Dell Networking OS. Object tracking allows the Dell Networking Operating System (OS) client processes, such as virtual router redundancy protocol (VRRP), to monitor tracked objects (for example, interface or link status) and take appropriate action when the state of an object changes.
  • Page 539: Track Layer 2 Interfaces

    Figure 83. Object Tracking Example When you configure a tracked object, such as an IPv4/IPv6 a route or interface, you specify an object number to identify the object. Optionally, you can also specify: • UP and DOWN thresholds used to report changes in a route metric. •...
  • Page 540: Track Ipv4 And Ipv6 Routes

    Track IPv4 and IPv6 Routes You can create an object that tracks an IPv4 or IPv6 route entry in the routing table. Specify a tracked route by its IPv4/IPv6 address and prefix-length, and optionally, by a virtual routing and forwarding (VRF) instance name if the route to be tracked is part of a VRF. The next-hop address is not part of the definition of the tracked object.
  • Page 541: Set Tracking Delays

    Track Layer 3 Interfaces • Track an IPv4/IPv6 Route For a complete listing of all commands related to object tracking, refer to the Dell Networking OS Command Line Interface Reference Guide. Tracking a Layer 2 Interface You can create an object that tracks the line-protocol state of a Layer 2 interface and monitors its operational status (UP or DOWN).
  • Page 542 The text string can be up to 80 characters. (Optional) Display the tracking configuration and the tracked object’s status. EXEC Privilege mode show track object-id Example of Configuring Object Tracking Dell(conf)#track 100 interface tengigabitethernet 7/1 line-protocol Dell(conf-track-100)#delay up 20 Dell(conf-track-100)#description San Jose data center Dell(conf-track-100)#end Dell#show track 100...
  • Page 543: Tracking A Layer 3 Interface

    Tracking a Layer 3 Interface You can create an object that tracks the routing status of an IPv4 or IPv6 Layer 3 interface. You can track the routing status of any of the following Layer 3 interfaces: • For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
  • Page 544: Track An Ipv4/Ipv6 Route

    EXEC Privilege mode show track object-id Example of Configuring Object Tracking (IPv4 Interface) Example of Configuring Object Tracking (IPv6 Interface) Dell(conf)#track 101 interface tengigabitethernet 7/2 ip routing Dell(conf-track-101)#delay up 20 Dell(conf-track-101)#description NYC metro Dell(conf-track-101)#end Dell#show track 101 Track 101 Interface TenGigabitEthernet 7/2 ip routing...
  • Page 545 – For OSPF, you can set the resolution in the range from 1 to 1592, where the default is 1. – The resolution value used to map static routes is not configurable. By default, Dell Networking OS assigns a metric of 0 to static routes.
  • Page 546 IP route 10.0.0.0/8 reachability Reachability is Down (route not in route table) 2 changes, last change 00:02:49 Tracked by: Dell#configure Dell(conf)#track 4 ip route 3.1.1.0/24 reachability vrf vrf1 Dell(conf)#track 105 ipv6 route 1234::/64 reachability Dell(conf-track-105)#delay down 5 Dell(conf-track-105)#description Headquarters Dell(conf-track-105)#end...
  • Page 547 EXEC Privilege mode show track object-id Example of the track ip route metric threshold Command Example of the track ipv6 route metric threshold Command Dell(conf)#track 6 ip route 2.1.1.0/24 metric threshold Dell(conf-track-6)#delay down 20 Dell(conf-track-6)#delay up 20 Dell(conf-track-6)#description track ip route metric...
  • Page 548: Displaying Tracked Objects

    Dell(conf-track-6)#threshold metric down 40 Dell(conf-track-6)#threshold metric up 40 Dell(conf-track-6)#exit Dell(conf)#track 10 ip route 3.1.1.0/24 metric threshold vrf vrf1 Dell(conf)#track 8 ipv6 route 2::/64 metric threshold Dell(conf-track-8)#threshold metric up 30 Dell(conf-track-8)#threshold metric down 40 Displaying Tracked Objects To display the currently configured objects used to track Layer 2 and Layer 3 interfaces, and IPv4 and IPv6 routes, use the following show commands.
  • Page 549 Dell#show track resolution IP Route Resolution ISIS OSPF IPv6 Route Resolution ISIS Dell#show track vrf red Track 5 IP route 192.168.0.0/24 reachability, Vrf: red Reachability is Up (CONNECTED) 3 changes, last change 00:02:39 First-hop interface is GigabitEthernet 13/4 Dell#show running-config track track 1 ip route 23.0.0.0/8 reachability...
  • Page 550: Open Shortest Path First (Ospfv2 And Ospfv3)

    Open Shortest Path First (OSPFv2 and OSPFv3) Open shortest path first (OSPFv2 for IPv4) and OSPF version 3 (OSPF for IPv6) are supported on Dell Networking OS. This chapter provides a general description of OSPFv2 (OSPF for IPv4) and OSPFv3 (OSPF for IPv6) as supported in the Dell Networking Operating System (OS).
  • Page 551: Area Types

    Areas allow you to further organize your routers within in the AS. One or more areas are required within the AS. Areas are valuable in that they allow sub-networks to "hide" within the AS, thus minimizing the size of the routing tables on all routers. An area within the AS may not see the details of another area’s topology.
  • Page 552: Networks And Neighbors

    AS information from the backbone or other areas. However, a virtual link can traverse it. • Totally stubby areas are referred to as no summary areas in the Dell Networking OS. Networks and Neighbors As a link-state protocol, OSPF sends routing information to other OSPF routers concerning the state of the links between them.
  • Page 553 Figure 85. OSPF Routing Examples Backbone Router (BR) A backbone router (BR) is part of the OSPF Backbone, Area 0. This includes all ABRs. It can also include any routers that connect only to the backbone and another ABR, but are only part of Area 0, such as Router I in the previous example. Area Border Router (ABR) Within an AS, an area border router (ABR) connects one or more areas to the backbone.
  • Page 554: Designated And Backup Designated Routers

    These router designations are not the same ad the router IDs described earlier. The DRs and BDRs are configurable in Dell Networking OS. If you do not define DR or BDR in Dell Networking OS, the system assigns them. OSPF looks at the priority of the routers on the segment to determine which routers are the DR and BDR.
  • Page 555 available. An ABR floods the information for the router (for example, the ASBR where the Type 5 advertisement originated. The link-state ID for Type 4 LSAs is the router ID of the described ASBR). • Type 5: LSA — These LSAs contain information imported into OSPF from other routing processes. They are flooded to all areas, except stub areas.
  • Page 556: Router Priority And Cost

    Figure 86. Priority and Cost Examples OSPF with Dell Networking OS Dell Networking OS supports up to 10,000 OSPF routes for OSPFv2. Within that 10,000 routes, you can designate up to 8,000 routes as external and up to 2,000 as inter/intra area routes.
  • Page 557: Graceful Restart

    Dell Networking OS supports stub areas, totally stub (no summary) and not so stubby areas (NSSAs) and supports the following LSAs, as described earlier. • Router (type 1) • Network (type 2) • Network Summary (type 3) • AS Boundary (type 4) •...
  • Page 558: Fast Convergence (Ospfv2, Ipv4 Only)

    Fast convergence allows you to define the speeds at which LSAs are originated and accepted, and reduce OSPFv2 end-to-end convergence time. Dell Networking OS allows you to accept and originate LSAa as soon as they are available to speed up route information propagation.
  • Page 559: Rfc-2328 Compliant Ospf Flooding

    Enabling RFC-2328 Compliant OSPF Flooding To enable OSPF flooding, use the following command. When you enable this command, it configures Dell Networking OS to flood LSAs on all interfaces. • Enable RFC 2328 flooding.
  • Page 560: Ospf Ack Packing

    In Dell Networking OS, the OSPF dead interval value is, by default, set to 40 seconds, and is independent of the OSPF hello interval. Configuring a hello interval does not change the dead interval in Dell Networking OS.
  • Page 561: Configuration Information

    Layer 3 routing. Enable OSPF globally. Assign network area and neighbors. Add interfaces or configure other attributes. For a complete list of the OSPF commands, refer to the OSPF section in the Dell Networking OS Command Line Reference Guide document. Enabling OSPFv2 To enable Layer 3 routing, assign an IP address to an interface (physical or Loopback).
  • Page 562 In CONFIGURATION ROUTER OSPF mode, assign the router ID. The router ID is not required to be the router’s IP address. However, Dell Networking recommends using the IP address as the router ID for easier management and troubleshooting. Optional process-id commands are also described.
  • Page 563 EXEC mode show ip ospf process-id Example of Viewing the Current OSPFv2 Status Dell#show ip ospf 55555 Routing Process ospf 55555 with ID 10.10.10.10 Supports only single TOS (TOS0) routes SPF schedule delay 5 secs, Hold time between two SPFs 10 secs...
  • Page 564 The first bold lines assign an IP address to a Layer 3 interface, and theno shutdown command ensures that the interface is UP. The second bold line assigns the IP address of an interface to an area. Example of Enabling OSPFv2 and Assigning an Area to an Interface Dell#(conf)#int te 4/14 Dell(conf-if-te-4/14)#ip address 10.10.10.10/24 Dell(conf-if-te-4/14)#no shutdown Dell(conf-if-te-4/14)#ex...
  • Page 565 Dell(conf-router_ospf-1)#network 20.20.20.20/24 area 2 Dell(conf-router_ospf-1)# Dell# Dell Networking recommends using the interface IP addresses for the OSPFv2 router ID for easier management and troubleshooting. To view the configuration, use the show config command in CONFIGURATION ROUTER OSPF mode. OSPF, by default, sends hello packets out to all physical interfaces assigned an IP address that is a subset of a network on which OSPF is enabled.
  • Page 566 Example of the show ip ospf database database-summary Command To view which LSAs are transmitted, use the show ip ospf database process-id database- summary command in EXEC Privilege mode. Dell#show ip ospf 34 database database-summary OSPF Router with ID (10.1.2.100) (Process ID 34) Area ID Router Network S-Net S-ASBR Type-7 Subtotal 2.2.2.2...
  • Page 567 When you configure a passive interface, the show ip ospf process-id interface command adds the words passive interface to indicate that the hello packets are not transmitted on that interface (shown in bold). Dell#show ip ospf 34 int TenGigabitEthernet 1/1 is up, line protocol is down Internet Address 10.1.2.100/24, Area 1.1.1.1 Process ID 34, Router ID 10.1.2.100, Network Type BROADCAST, Cost: 10...
  • Page 568 NOTE: A higher convergence level can result in occasional loss of OSPF adjacency. Generally, convergence level 1 meets most convergence requirements. Only select higher convergence levels following consultation with Dell Technical Support. Examples of the fast-converge Command In the examples below, Convergence Level shows the fast-converge parameter setting and Min LSA origination shows the LSA parameters (shown in bold).
  • Page 569 Dell# Changing OSPFv2 Parameters on Interfaces In Dell Networking OS, you can modify the OSPF settings on the interfaces. Some interface parameter values must be consistent across all interfaces to avoid routing errors. For example, set the same time interval for the hello packets on all routers in the OSPF network to prevent misconfiguration of OSPF neighbors.
  • Page 570 10.1.2.100 255.255.255.0 no shutdown ip ospf cost 45 Dell(conf-if)#end Dell#show ip ospf 34 interface TenGigabitEthernet 1/1 is up, line protocol is up Internet Address 10.1.2.100/24, Area 2.2.2.2 Process ID 34, Router ID 10.1.2.100, Network Type BROADCAST, Cost: 45 Transmit Delay is 1 sec, State DR, Priority 1 Designated Router (ID) 10.1.2.100, Interface address 10.1.2.100...
  • Page 571 Graceful restart is enabled for the global OSPF process. For more information, refer to Graceful Restart. The Dell Networking implementation of OSPFv2 graceful restart enables you to specify: • grace period — the length of time the graceful restart process can last before OSPF terminates it. •...
  • Page 572 After you enable restart mode the router advertises the neighbor as fully adjacent during a restart. For more information about OSPF graceful restart, refer to the Dell Networking OS Command Line Reference Guide. Example of the show run ospf Command When you configure a graceful restart on an OSPFv2 router, the show run ospf command displays information similar to the following.
  • Page 573 10.0.2.0/24 area 0 Dell# Creating Filter Routes To filter routes, use prefix lists. OSPF applies prefix lists to incoming or outgoing routes. Incoming routes must meet the conditions of the prefix lists. If they do not, OSPF does not add the route to the routing table.
  • Page 574 Dell(conf-router_ospf)# Troubleshooting OSPFv2 Dell Networking OS has several tools to make troubleshooting easier. Be sure to check the following, as these questions represent typical issues that interrupt an OSPFv2 process. NOTE: The following is not a comprehensive list, just some examples of typical troubleshooting checks.
  • Page 575 – packet: view OSPF packet information. – spf: view SPF information. – database-timers rate-limit: view the LSAs currently in the queue. Example of Viewing OSPF Configuration Dell#show run ospf router ospf 3 router ospf 4 router-id 4.4.4.4 network 4.4.4.0/28 area 1...
  • Page 576: Sample Configurations For Ospfv2

    2 virtual-link 90.90.90.90 retransmit-interval 300 ipv6 router ospf 999 default-information originate always router-id 10.10.10.10 Dell# Sample Configurations for OSPFv2 The following configurations are examples for enabling OSPFv2. These examples are not comprehensive directions. They are intended to give you some guidance with typical configurations.
  • Page 577: Ospf Area 0 - Te 3/1 And 3/2

    no shutdown interface Loopback 10 ip address 192.168.100.100/24 no shutdown OSPF Area 0 — Te 3/1 and 3/2 router ospf 33333 network 192.168.100.0/24 area 0 network 10.0.13.0/24 area 0 network 10.0.23.0/24 area 0 interface Loopback 30 ip address 192.168.100.100/24 no shutdown interface TenGigabitEthernet 3/1 ip address 10.1.13.3/24 no shutdown...
  • Page 578: Enabling Ipv6 Unicast Routing

    command to create the OSPF process, then the network area command to enable OSPF on an interface. NOTE: The OSPFv2 network area command enables OSPF on multiple interfaces with the single command. Use the OSPFv3 ipv6 ospf area command on each interface that runs OSPFv3. All IPv6 addresses on an interface are included in the OSPFv3 process that is created on the interface.
  • Page 579: Assigning Ospfv3 Process Id And Router Id Globally

    • Assign the OSPFv3 process and an OSPFv3 area to this interface. CONF-INT-type slot/port mode ipv6 ospf process-id area area-id – process-id: the process ID number assigned. – area-id: the area ID for this interface. Assigning OSPFv3 Process ID and Router ID Globally To assign, disable, or reset OSPFv3 globally, use the following commands.
  • Page 580: Redistributing Routes

    – tag tag-value: The range is from 0 to 4294967295. Configuring a Default Route To generate a default external route into the OSPFv3 routing domain, configure Dell Networking OS. To specify the information for the default route, use the following command.
  • Page 581: Enabling Ospfv3 Graceful Restart

    – always: indicate that default route information is always advertised. – metric metric-value: The range is from 0 to 4294967295. – metric-type metric-type: enter 1 for OSPFv3 external route type 1 OR 2 for OSPFv3 external route type 2. – route-map map-name: enter a name of a configured route map. Enabling OSPFv3 Graceful Restart For more information about graceful restart, refer to Graceful...
  • Page 582 30.1.1.0/24 area 0 ipv6 router ospf 1 log-adjacency-changes graceful-restart grace-period 180 The following example shows the show ipv6 ospf database database-summary command. Dell#show ipv6 ospf database database-summary OSPFv3 Router with ID (200.1.1.1) (Process ID 1) Process 1 database summary Type Count/Status...
  • Page 583: Ospfv3 Authentication Using Ipsec

    Tunnel mode — is more secure and encrypts both the header and payload. On the receiving side, an IPsec-compliant device decrypts each packet. NOTE: Dell Networking OS supports only Transport Encryption mode in OSPFv3 authentication with IPsec. With IPsec-based authentication, Crypto images are used to include the IPsec secure socket application programming interface (API) required for use with OSPFv3.
  • Page 584 ESP header between the next layer protocol header and encapsulated IP header in Tunnel mode. However, Tunnel mode is not supported in Dell Networking OS. For detailed information about the IP ESP protocol, refer to RFC 4303.
  • Page 585 – ESP with non-null encryption is supported for full confidentiality. – 3DES, DES, AES-CBC, and NULL encryption algorithms are supported; encrypted and unencrypted keys are supported. NOTE: To encrypt all keys on a router, use the service password-encryption command in Global Configuration mode.
  • Page 586 • Display the security associations set up for OSPFv3 interfaces in authentication policies. show crypto ipsec sa ipv6 Configuring IPsec Encryption on an Interface To configure, remove, or display IPsec encryption on an interface, use the following commands. Prerequisite: Before you enable IPsec encryption on an OSPFv3 interface, first enable IPv6 unicast routing globally, configure an IPv6 address and enable OSPFv3 on the interface, and assign it to an area (refer to Configuration Task List for OSPFv3 (OSPF for...
  • Page 587 Configuring IPSec Authentication for an OSPFv3 Area To configure, remove, or display IPSec authentication for an OSPFv3 area, use the following commands. Prerequisite: Before you enable IPsec authentication on an OSPFv3 area, first enable OSPFv3 globally on the router (refer to Configuration Task List for OSPFv3 (OSPF for IPv6)).
  • Page 588 The configuration of IPsec encryption on an interface-level takes precedence over an area-level configuration. If you remove an interface configuration, an area encryption policy that has been configured is applied to the interface. • Enable IPsec encryption for OSPFv3 packets in an area. CONF-IPV6-ROUTER-OSPF mode area area-id encryption ipsec spi number esp encryption-algorithm [key- encryption-type] key authentication-algorithm [key-authentication-type] key...
  • Page 589 Inbound ESP Cipher Key bbdd96e6eb4828e2e27bc3f9ff541e43faa759c9ef5706ba10345a1039ba8f8a Outbound ESP Cipher Key : bbdd96e6eb4828e2e27bc3f9ff541e43faa759c9ef5706ba10345a1039ba8f8a Transform set : esp-128-aes esp-sha1-hmac The following example shows the show crypto ipsec sa ipv6 command. Dell#show crypto ipsec sa ipv6 Open Shortest Path First (OSPFv2 and OSPFv3)
  • Page 590: Troubleshooting Ospfv3

    STATUS : ACTIVE Troubleshooting OSPFv3 Dell Networking OS has several tools to make troubleshooting easier. Consider the following information as these are typical issues that interrupt the OSPFv3 process. NOTE: The following troubleshooting section is not meant to be a comprehensive list, only examples of typical troubleshooting checks.
  • Page 591 • show ipv6 interfaces • show ipv6 protocols • debug ipv6 ospf events and/or packets • show ipv6 neighbors • show virtual links • show ipv6 routes Viewing Summary Information To get general route, configuration, links status, and debug information, use the following commands. •...
  • Page 592: Policy-Based Routing (Pbr)

    Policy-based Routing (PBR) allows a switch to make routing decisions based on policies applied to an interface. This chapter covers the following topics: • Overview • Implementing Policy-based Routing with Dell Networking OS • Configuration Task List for Policy-based Routing • Sample Configuration Overview When a router receives a packet it normally decides where to forward it based on the destination address in the packet, which is used to look up an entry in a routing table.
  • Page 593 If the specified next-hops are not reachable, then the normal routing table is used to forward the traffic. • Dell Networking OS supports multiple next-hop entries in the redirect lists. • Redirect-Lists are applied at Ingress. PBR with Redirect-to-Tunnel Option: The user can provide a tunnel id for a redirect rule.
  • Page 594: Implementing Policy-Based Routing With Dell Networking Os

    Tunnel Interface which is available by sending ICMP pings to verify reach ability and/or check the Tunnel Interface UP or DOWN status, and then route traffic out to that next-hop and/or Tunnel Interface Implementing Policy-based Routing with Dell Networking OS •...
  • Page 595 Format: 16 characters Delete the redirect list with the no ip redirect-list command. The following example creates a redirect list by the name of “xyz.” Dell(conf)#ip redirect-list ? WORD Redirect-list name (max 16 chars) Dell(conf)#ip redirect-list xyz Create a Rule for a Redirect-list Use the following command in CONFIGURATION REDIRECT-LIST mode to set the rules for the redirect list.
  • Page 596 Dell(conf-redirect-list)#redirect 3.3.3.3 ip 222.1.1.1 /32 77.1.1.1 ? Mask A.B.C.D or /nn Mask in dotted decimal or in slash format Dell(conf-redirect-list)#redirect 3.3.3.3 ip 222.1.1.1 /32 77.1.1.1 /32 ? Dell(conf-redirect-list)#redirect 3.3.3.3 ip 222.1.1.1 /32 77.1.1.1 /32 Dell(conf-redirect-list)#do show ip redirect-list IP redirect-list xyz: Defined as: seq 5 redirect 3.3.3.3 ip host 222.1.1.1 host 77.1.1.1...
  • Page 597: Pbr Exceptions (Permit)

    Dell Networking OS assigns the first available sequence number to a rule configured without a sequence number and inserts the rule into the PBR CAM region next to the existing entries. Since the order of rules is important, ensure that you configure any necessary sequence numbers.
  • Page 598 Dell(conf-if-te-1/2)# In addition to supporting multiple redirect-lists in a redirect-group, multiple redirect-groups are supported on a single interface. Dell Networking OS has the capability to support multiple groups on an interface for backup purposes. Show Redirect List Configuration Policy-based Routing (PBR)
  • Page 599 List the redirect list configuration using the show ip redirect-list redirect-list-name command. The non- contiguous mask is displayed in dotted format (x.x.x.x). The contiguous mask is displayed in /x format. Some sample outputs are shown below: Dell#show ip redirect-list explicit_tunnel IP redirect-list explicit_tunnel: Defined as: seq 5 redirect tunnel 1 track 1 tcp 155.55.2.0/24 222.22.2.0/24, Track 1 [up],...
  • Page 600: Sample Configuration

    Showing CAM PBR Configuration Example : Dell#show cam pbr stack-unit 1 port-set 0 TCP Flag: Bit 5 - URG, Bit 4 - ACK, Bit 3 - PSH, Bit 2 - RST, Bit 1 - SYN, Bit...
  • Page 601: Redirect-List Gold

    Create the Redirect-List GOLD EDGE_ROUTER(conf-if-Te-2/23)#ip redirect-list GOLD EDGE_ROUTER(conf-redirect-list)#description Route GOLD traffic to ISP_GOLD. EDGE_ROUTER(conf-redirect-list)#direct 10.99.99.254 ip 192.168.1.0/24 any EDGE_ROUTER(conf-redirect-list)#redirect 10.99.99.254 ip 192.168.2.0/24 any EDGE_ROUTER(conf-redirect-list)# seq 15 permit ip any any EDGE_ROUTER(conf-redirect-list)#show config ip redirect-list GOLD description Route GOLD traffic to ISP_GOLD. seq 5 redirect 10.99.99.254 ip 192.168.1.0/24 any seq 10 redirect 10.99.99.254 ip 192.168.2.0/24 any seq 15 permit ip any any...
  • Page 602 222.22.2.0/24 Dell(conf-redirect-list)#redirect 42.1.1.2 track 3 tcp any any Dell(conf-redirect-list)#redirect 42.1.1.2 track 3 udp 155.55.0.0/16 host 144.144.144.144 Dell(conf-redirect-list)#redirect 42.1.1.2 track 3 udp any host 144.144.144.144 Dell(conf-redirect-list)#redirect 43.1.1.2 track 4 ip host 7.7.7.7 host 144.144.144.144 Dell(conf-redirect-list)#end Verify the Status of the Track Objects (Up/Down):...
  • Page 603 Dell(conf-if-tu-2)#no shutdown Dell(conf-if-tu-2)#end Dell# Create Track Objects to track the Tunnel Interfaces: Dell#configure terminal Dell(conf)#track 1 interface tunnel 1 ip routing Dell(conf-track-1)#exit Dell(conf)#track 2 interface tunnel 2 ipv6 routing Dell(conf-track-2)#end Verify the Status of the Track Objects (Up/Down): Dell#show track brief...
  • Page 604 Create a Redirect-list with Track Objects pertaining to Tunnel Interfaces: Dell#configure terminal Dell(conf)#ip redirect-list explicit_tunnel Dell(conf-redirect-list)#redirect tunnel 1 track 1 tcp 155.55.2.0/24 222.22.2.0/24 Dell(conf-redirect-list)#redirect tunnel 1 track 1 tcp any any Dell(conf-redirect-list)#redirect tunnel 1 track 1 udp 155.55.0.0/16 host 144.144.144.144 Dell(conf-redirect-list)#redirect tunnel 2 track 2 tcp 155.55.2.0/24 222.22.2.0/24...
  • Page 605: Pim Sparse-Mode (Pim-Sm)

    The SPT-Threshold is zero, which means that the last-hop designated router (DR) joins the shortest path tree (SPT) to the source after receiving the first multicast packet. • Dell Networking OS reduces the number of control messages sent between multicast routers by bundling Join and Prune requests in the same message. •...
  • Page 606: Refuse Multicast Traffic

    Prune message. Dell Networking OS Behavior: When the router creates an SPT to the source, there are then two paths between the receiver and the source, the SPT and the RPT. Until the router can prune itself from the RPT, the receiver receives duplicate multicast packets which may cause disruption.
  • Page 607: Configuring Pim-Sm

    Enable PIM-Sparse mode. INTERFACE mode ip pim sparse-mode Examples of Viewing PIM-SM Information To display which interfaces are enabled with PIM-SM, use the show ip pim interface command from EXEC Privilege mode. Dell#show ip pim interface Address Interface Ver/ Query Mode Count...
  • Page 608: Configuring S,G Expiry Timers

    To display PIM neighbors for each interface, use the show ip pim neighbor command EXEC Privilege mode. Dell#show ip pim neighbor Neighbor Interface Uptime/Expires Address Prio/Mode 127.87.5.5 Te 1/11 01:44:59/00:01:16 1 / S 127.87.3.5 Te 1/12 01:45:00/00:01:16 1 / DR 127.87.50.5...
  • Page 609: Configuring A Static Rendezvous Point

    10 permit ip any 232.1.1.0/24 seq 15 permit ip 100.1.0.0/16 any Dell(config-ext-nacl)#exit Dell(conf)#ip pim sparse-mode sg-expiry-timer 1800 sg-list SGtimer To display the expiry time configuration, use the show running-configuration [acl | pim] command from EXEC Privilege mode. Configuring a Static Rendezvous Point The rendezvous point (RP) is a PIM-enabled interface on a router that acts as the root a group-specific tree;...
  • Page 610: Configuring A Designated Router

    226.1.1.1 165.87.50.5 To display the assigned RP for a group range (group-to-RP mapping), use the show ip pim rp mapping command in EXEC privilege mode. Dell#show ip pim rp mapping PIM Group-to-RP Mappings Group(s): 224.0.0.0/4, Static RP: 165.87.50.5, v2 Configuring a Designated Router Multiple PIM-SM routers might be connected to a single local area network (LAN) segment.
  • Page 611: Enabling Pim-Sm Graceful Restart

    – (option) helper-only: this mode takes precedence over any graceful restart configuration. NOTE: In helper-only mode, the system preserves the PIM states of a neighboring router while the neighbor gracefully restarts, but the Dell Networking system allows itself to be taken off the forwarding path if it restarts.
  • Page 612: Pim Source-Specific Mode (Pim-Ssm)

    SPT. PIM-SSM uses IGMPv3. Because receivers subscribe to a source and group, the RP and shared tree is unnecessary; only SPTs are used. On Dell Networking systems, it is possible to use PIM-SM with IGMPv3 to achieve the same result, but PIM-SSM eliminates the unnecessary protocol overhead.
  • Page 613: Configure Pim-Smm

    Then, specify the multicast source. • When an SSM map is in place and Dell Networking OS cannot find any matching access lists for a group, it continues to create (*,G) entries because there is an implicit deny for unspecified groups in the ACL.
  • Page 614: Configuring Pim-Ssm With Igmpv2

    When an extended ACL is associated with this command, Dell Networking OS displays an error message. If you apply an extended ACL before you create it, Dell Networking OS accepts the configuration, but when the ACL is later defined, Dell Networking OS ignores the ACL and the stated mapping has no effect.
  • Page 615 Router mode INCLUDE Last reporter 165.87.34.100 Group source list Source address Expires 165.87.32.21 Never R1(conf)#do show run pim ip pim rp-address 10.11.12.2 group-address 224.0.0.0/4 ip pim ssm-range ssm R1(conf)#do show run acl ip access-list standard map seq 5 permit host 239.0.0.2 ip access-list standard ssm seq 5 permit host 239.0.0.2 R1(conf)#ip igmp ssm-map map 10.11.5.2...
  • Page 616: Port Monitoring

    In general, a monitoring port should have no ip address and no shutdown as the only configuration; Dell Networking OS permits a limited set of commands for monitoring ports. You can display these commands using the ? command. A monitoring port also may not be a member of a VLAN.
  • Page 617: Port Monitoring

    Port Monitoring The Z9000 supports multiple source-destination statements in a single monitor session. The maximum number of source ports that can be supported in a session is 128. The maximum number of destination ports that can be supported is 4 per port pipe.
  • Page 618: Configuring Port Monitoring

    Figure 88. Port Monitoring Configurations on the S-Series Dell Networking OS Behavior: All monitored frames are tagged if the configured monitoring direction is egress (TX), regardless of whether the monitored port (MD) is a Layer 2 or Layer 3 port. If the MD port is a Layer 2 port, the frames are tagged with the VLAN ID of the VLAN to which the MD belongs.
  • Page 619 To display information on currently configured port-monitoring sessions, use the show monitor session command from EXEC Privilege mode. Dell(conf)#monitor session 0 Dell(conf-mon-sess-0)#$source ten 1/1 dest ten 1/2 dir rx Dell(conf-mon-sess-0)#show c monitor session 0 source TenGigabitEthernet 1/1 destination TenGigabitEthernet 1/2 direction rx...
  • Page 620: Enabling Flow-Based Monitoring

    Enable flow-based monitoring for a monitoring session. MONITOR SESSION mode flow-based enable Define in access-list rules that include the keyword monitor. For port monitoring, Dell Networking OS only considers traffic matching rules with the keyword monitor. CONFIGURATION mode ip access-list...
  • Page 621: Remote Port Mirroring

    Dell(conf)#monitor session 0 Dell(conf-mon-sess-0)#flow-based enable Dell(conf)#ip access-list ext testflow Dell(config-ext-nacl)#seq 5 permit icmp any any count bytes monitor Dell(config-ext-nacl)#seq 10 permit ip 102.1.1.0/24 any count bytes monitor Dell(config-ext-nacl)#seq 15 deny udp any any count bytes Dell(config-ext-nacl)#seq 20 deny tcp any any count bytes...
  • Page 622: Configuring Remote Port Mirroring

    source session uses a separate reserved VLAN to transmit mirrored packets (mirrored source-session traffic is shown with an orange or green circle with a blue border). The reserved VLANs transport the mirrored traffic in sessions (blue pipes) to the destination analyzers in the local network.
  • Page 623 • Mirrored traffic is transported across the network using 802.1Q-in-802.1Q tunneling. The source address, destination address and original VLAN ID of the mirrored packet are preserved with the tagged VLAN header. Untagged source packets are tagged with the reserve VLAN ID. •...
  • Page 624: Displaying Remote-Port Mirroring Configurations

    Port-channel 10 destination remote-vlan 300 direction rx no disable To display the currently configured source and destination sessions for remote port mirroring on a switch, enter the show monitor session command in EXEC Privilege mode. Dell(conf)#do show monitor session SessID Source Destination...
  • Page 625 Configuring the sample Source Remote Port Mirroring Dell(conf)#interface vlan 10 Dell(conf-if-vl-10)#mode remote-port-mirroring Dell(conf-if-vl-10)#tagged te 1/4 Dell(conf-if-vl-10)#exit Dell(conf)#monitor session 1 type rpm Dell(conf-mon-sess-1)#source te 1/5 destination remote-vlan 10 dir rx Dell(conf-mon-sess-1)#no disable Dell(conf-mon-sess-1)#exit Dell(conf)#inte vlan 100 Dell(conf-if-vl-100)#tagged te 1/7 Dell(conf-if-vl-100)#exit Dell(conf)#interface vlan 20...
  • Page 626 Dell(conf)#interface vlan 30 Dell(conf-if-vl-30)#mode remote-port-mirroring Dell(conf-if-vl-30)#tagged te 1/30 Dell(conf-if-vl-30)#exit Dell(conf)#interface port-channel 10 Dell(conf-if-po-10)#channel-member te 1/28-29 Dell(conf-if-po-10)#no shutdown Dell(conf-if-po-10)#exit Dell(conf)#monitor session 3 type rpm Dell(conf-mon-sess-3)#source port-channel 10 dest remote-vlan 30 dir both Dell(conf-mon-sess-3)#no disable Dell(conf-mon-sess-3)# Dell(conf-mon-sess-3)#exit Dell(conf)#end Dell# Dell#show monitor session SessID Source...
  • Page 627 Dell(conf)#monitor session 1 type rpm Dell(conf-mon-sess-1)#source remote-vlan 10 dest te 1/4 Dell(conf-mon-sess-1)#exit Dell(conf)#monitor session 2 type rpm Dell(conf-mon-sess-2)#source remote-vlan 20 destination te 1/5 Dell(conf-mon-sess-2)#tagged destination te 0/4 Dell(conf-mon-sess-2)#exit Dell(conf)#monitor session 3 type rpm Dell(conf-mon-sess-3)#source remote-vlan 30 destination te 1/6 Dell(conf-mon-sess-3)#tagged destination te 1/6...
  • Page 628: Configuring The Encapsulated Remote Port Mirroring

    Important: The steps to be followed for the ERPM Encapsulation : • Dell Networking OS supports ERPM Source session only. The Encapsulated packets terminate at the destination ip or at the analyzer. • Make sure that the destination ip is reachable via the configured ip route (static or dynamic) •...
  • Page 629 Sample example for monitoring the VLANs as source, an access list with monitor keyword in its rules needs to be attached to the vlan interface. Dell(conf)#mac access-list standard flow Dell(config-std-macl)#seq 5 permit 00:00:0a:00:00:0b count monitor Dell#show running-config interface vlan 11 interface Vlan 11...
  • Page 630: Erpm Behavior On A Typical Dell Networking Os

    ERPM Behavior on a typical Dell Networking OS The Dell Networking OS is designed to support only the Encapsulation of the data received / transmitted at the specified source port (Port A). An ERPM destination session / decapsulation of the ERPM packets at the destination Switch are not supported.
  • Page 631 – This script erpm.zip is available for download at the following location: http:// en.community.dell.com/techcenter/networking/m/force10_networking_scripts/ 20438882.aspx – Unzip the erpm.zip and copy the erpm.py file to the Linux server.
  • Page 632: Private Vlans (Pvlan)

    Dell Networking OS Command Line Reference Guide. Private VLANs extend the Dell Networking OS security suite by providing Layer 2 isolation between ports within the same virtual local area network (VLAN). A PVLAN partitions a traditional VLAN into subdomains identified by a primary and secondary VLAN pair.
  • Page 633: Using The Private Vlan Commands

    – A switch can have one or more primary VLANs, and it can have none. – A primary VLAN has one or more secondary VLANs. – A primary VLAN and each of its secondary VLANs decrement the available number of VLAN IDs in the switch.
  • Page 634: Configuration Task List

    VLANs are operationally up, Layer 3 traffic is still transmitted across secondary VLANs. NOTE: The outputs of the show arp and show vlan commands provide PVLAN data. For more information, refer to the Dell Networking OS Command Line Reference Guide. Configuration Task List The following sections contain the procedures that configure a private VLAN.
  • Page 635: Creating A Primary Vlan

    “regular” ports (ports not configured as PVLAN ports) to PVLANs. The following example shows the switchport mode private-vlan command on a port and on a port channel. Dell#conf Dell(conf)#interface TenGigabitEthernet 2/1 Dell(conf-if-te-2/1)#switchport mode private-vlan promiscuous Dell(conf)#interface TenGigabitEthernet 2/2 Dell(conf-if-te-2/2)#switchport mode private-vlan host Dell(conf)#interface TenGigabitEthernet 2/3 Dell(conf-if-te-2/3)#switchport mode private-vlan trunk...
  • Page 636: Creating A Community Vlan

    Map secondary VLANs to the selected primary VLAN. INTERFACE VLAN mode private-vlan mapping secondary-vlan vlan-list The list of secondary VLANs can be: • Specified in comma-delimited (VLAN-ID,VLAN-ID) or hyphenated-range format (VLAN-ID- VLAN-ID). • Specified with this command even before they have been created. •...
  • Page 637: Creating An Isolated Vlan

    PVLAN member VLANs (primary, community, and isolated VLANs). Dell#conf Dell(conf)# interface vlan 10 Dell(conf-vlan-10)# private-vlan mode primary Dell(conf-vlan-10)# private-vlan mapping secondary-vlan 100-101 Dell(conf-vlan-10)# untagged Te 2/1 Dell(conf-vlan-10)# tagged Te 2/3 Dell(conf)# interface vlan 101 Dell(conf-vlan-101)# private-vlan mode community...
  • Page 638: Private Vlan Configuration Example

    Dell(conf-vlan-100)# private-vlan mode isolated Dell(conf-vlan-100)# untagged Te 2/2 Private VLAN Configuration Example The following example shows a private VLAN topology. Figure 90. Sample Private VLAN Topology The following configuration is based on the example diagram for the Z9500: • Te 1/1 and Te 1/23 are configured as promiscuous ports, assigned to the primary VLAN, VLAN 4000.
  • Page 639: Inspecting The Private Vlan Configuration

    Display the type and status of the configured PVLAN interfaces. show interfaces private-vlan [interface interface] This command is specific to the PVLAN feature. For more information, refer to the Security chapter in the Dell Networking OS Command Line Reference Guide. •...
  • Page 640 The following examples show the results of using this command without the command options on the C300 and S50V switches in the topology diagram previously shown. • Display the primary-secondary VLAN mapping. The following example shows the output from the S50V.
  • Page 641 interface TenGigabitEthernet 1/5 no ip address switchport switchport mode private-vlan host no shutdown interface TenGigabitEthernet 1/6 no ip address switchport switchport mode private-vlan host no shutdown interface TenGigabitEthernet 1/25 no ip address switchport switchport mode private-vlan trunk no shutdown interface Vlan 4000 private-vlan mode primary private-vlan mapping secondary-vlan 4001-4003 no ip address...
  • Page 642: Per-Vlan Spanning Tree Plus (Pvst+)

    For more information about spanning tree, refer to the Spanning Tree Protocol (STP) chapter. Figure 91. Per-VLAN Spanning Tree The Dell Networking OS supports three other variations of spanning tree, as shown in the following table. Per-VLAN Spanning Tree Plus (PVST+)
  • Page 643: Implementation Information

    The Dell Networking OS implementation of PVST+ uses IEEE 802.1s costs as the default costs (as shown in the following table). Other implementations use IEEE 802.1w costs as the default costs. If you are using Dell Networking systems in a multivendor network, verify that the costs are values you intended.
  • Page 644: Disabling Pvst

    PROTOCOL PVST mode no disable Disabling PVST+ To disable PVST+ globally or on an interface, use the following commands. • Disable PVST+ globally. PROTOCOL PVST mode disable • Disable PVST+ on an interface, or remove a PVST+ parameter configuration. INTERFACE mode no spanning-tree pvst Example of Viewing PVST+ Configuration To display your PVST+ configuration, use the show config command from PROTOCOL PVST mode.
  • Page 645 Figure 92. Load Balancing with PVST+ The bridge with the bridge value for bridge priority is elected root. Because all bridges use the default priority (until configured otherwise), the lowest MAC address is used as a tie-breaker. To increase the likelihood that a bridge is selected as the STP root, assign bridges a low non-default value for bridge priority.
  • Page 646: Modifying Global Pvst+ Parameters

    The default is 15 seconds. • Change the hello-time parameter. PROTOCOL PVST mode vlan hello-time NOTE: With large configurations (especially those configurations with more ports), Dell Networking recommends increasing the hello-time. The range is from 1 to 10. The default is 2 seconds. •...
  • Page 647: Modifying Interface Pvst+ Parameters

    NOTE: The Dell Networking OS implementation of PVST+ uses IEEE 802.1s costs as the default costs. Other implementations use IEEE 802.1w costs as the default costs. If you are using Dell Networking systems in a multi-vendor network, verify that the costs are values you intended.
  • Page 648: Configuring An Edgeport

    [bpduguard | shutdown-on-violation] The EdgePort status of each interface is given in the output of the show spanning-tree pvst command, as previously shown. Dell Networking OS Behavior: Regarding the bpduguard shutdown-on-violation command behavior: • If the interface to be shut down is a port channel, all the member ports are disabled in the hardware.
  • Page 649: Pvst+ In Multi-Vendor Networks

    PVST+ to avoid potential misconfigurations. If you enable PVST+ on the Dell Networking switch in this network, P1 and P2 receive BPDUs from each other. Ordinarily, the Bridge ID in the frame matches the Root ID, a loop is detected, and the rules of convergence require that P2 move to blocking state because it has the lowest port ID.
  • Page 650: Pvst+ Sample Configurations

    Example of Viewing the Extend System ID in a PVST+ Configuration Dell(conf-pvst)#do show spanning-tree pvst vlan 5 brief VLAN 5 Executing IEEE compatible Spanning Tree Protocol Root ID Priority 32773, Address 0001.e832.73f7 Root Bridge hello time 2, max age 20, forward delay 15 Bridge ID Priority 32773 (priority 32768 sys-id-ext 5), Address 0001.e832.73f7...
  • Page 651 no ip address tagged TenGigabitEthernet 2/12,32 no shutdown interface Vlan 200 no ip address tagged TenGigabitEthernet 2/12,32 no shutdown interface Vlan 300 no ip address tagged TenGigabitEthernet 2/12,32 no shutdown protocol spanning-tree pvst no disable vlan 200 bridge-priority 4096 Example of PVST+ Configuration (R3) interface TenGigabitEthernet 3/12 no ip address switchport...
  • Page 652: Quality Of Service (Qos)

    Quality of service (QoS) is supported on Dell Networking OS. Differentiated service is accomplished by classifying and queuing traffic, and assigning priorities to those queues. Table 39. Dell Networking Operating System (OS) Support for Port-Based, Policy-Based Features Feature Direction Port-Based QoS Configurations...
  • Page 653 Feature Direction Configure a Scheduler to Queue Egress Specify WRED Drop Precedence Egress Create Policy Maps Ingress + Egress Create Input Policy Maps Ingress Honor DSCP Values on Ingress Packets Ingress Honoring dot1p Values on Ingress Packets Ingress Create Output Policy Maps Egress Specify an Aggregate QoS Policy Egress...
  • Page 654: Implementation Information

    Figure 94. Dell Networking QoS Architecture Implementation Information The Dell Networking QoS implementation complies with IEEE 802.1p User Priority Bits for QoS Indication. It also implements these Internet Engineering Task Force (IETF) documents: • RFC 2474, Definition of the Differentiated Services Field (DS Field) in the IPv4 Headers •...
  • Page 655: Setting Dot1P Priorities For Incoming Traffic

    Setting dot1p Priorities for Incoming Traffic Dell Networking OS places traffic marked with a priority in a queue based on the following table. If you set a dot1p priority for a port-channel, all port-channel members are configured with the same value.
  • Page 656: Configuring Port-Based Rate Policing

    Dell(conf-if-te-1/1)#end Configuring Port-Based Rate Shaping Dell Networking OS Behavior: Rate shaping is effectively rate limiting because of its smaller buffer size. Rate shaping on tagged ports is slightly greater than the configured rate and rate shaping on untagged ports is slightly less than configured rate.
  • Page 657: Policy-Based Qos Configurations

    QoS Policy mode rate-shape Example of rate shape Command Dell#configure terminal Dell(conf)#interface tengigabitethernet 1/1 Dell(conf-if-te-1/1)#rate shape 500 50 Dell(conf-if-te-1/1)#end Policy-Based QoS Configurations Policy-based QoS configurations consist of the components shown in the following example. Figure 95. Constructing Policy-Based QoS Configurations...
  • Page 658: Classify Traffic

    Class maps differentiate traffic so that you can apply separate quality of service policies to different types of traffic. For both class maps, Layer 2 and Layer 3, Dell Networking OS matches packets against match criteria in the order that you configure them.
  • Page 659 CLASS MAP mode match mac After you create a class-map, Dell Networking OS places you in CLASS MAP mode. Match-any class maps allow up to five access-lists. Match-all class-maps allow only one. You can match against only one VLAN ID.
  • Page 660 To display all class-maps or a specific class map, use the following command. Dell Networking OS Behavior: An explicit “deny any" rule in a Layer 3 ACL used in a (match any or match all) class-map creates a "default to Queue 0" entry in the CAM, which causes unintended traffic classification.
  • Page 661: Create A Qos Policy

    10 deny ip any any ip access-list extended AF2 seq 5 permit ip host 23.64.0.5 any seq 10 deny ip any any Dell# show cam layer3-qos interface tengigabitethernet 2/4 Port Dscp Proto Tcp Dst SrcIp DstIp DSCP Queue Index...
  • Page 662 NOTE: To avoid issues misconfiguration causes, Dell Networking recommends configuring either DCBX or Egress QoS features, but not both simultaneously. If you enable both DCBX and Egress QoS at the same time, the DCBX configuration is applied and unexpected behavior occurs on the Egress QoS.
  • Page 663: Create Policy Maps

    Configuring Policy-Based Rate Shaping To configure policy-based rate shaping, use the following command. • Configure rate shape egress traffic. QOS-POLICY-OUT mode rate-shape Allocating Bandwidth to Queue Schedule packets for egress based on Deficit Round Robin (DRR). These strategies both offer a guaranteed data rate.
  • Page 664 <number> qos-polcy Honoring DSCP Values on Ingress Packets Dell Networking OS provides the ability to honor DSCP values on ingress packets using Trust DSCP feature. The following table lists the standard DSCP definitions and indicates to which queues Dell Networking OS maps DSCP values.
  • Page 665 Honoring dot1p Values on Ingress Packets Dell Networking OS honors dot1p values on ingress packets with the Trust dot1p feature. The following table specifies the queue to which the classified traffic is sent based on the dot1p value. Table 43. Default dot1p to Queue Mapping...
  • Page 666 • If you apply a service policy that contains an ACL to more than one interface, Dell Networking OS uses ACL optimization to conserve CAM space. The ACL optimization behavior detects when an ACL exists in the CAM rather than writing it to the CAM multiple times.
  • Page 667 Examples for Creating a DSCP Color Map Display all DSCP color maps. Dell# show qos dscp-color-map Dscp-color-map mapONE yellow 4,7 red 20,30 Dscp-color-map mapTWO yellow 16,55 Display a specific DSCP color map. Dell# show qos dscp-color-map mapTWO Dscp-color-map mapTWO yellow 16,55 Quality of Service (QoS)
  • Page 668 TE 1/10 mapONE TE 1/11 mapTWO Display summary information about a color policy for a specific interface. Dell# show qos dscp-color-policy summary tengigabitethernet 1/10 Interface dscp-color-map TE 1/10 mapONE Display detailed information about a color policy for a specific interface...
  • Page 669: Enabling Qos Rate Adjustment

    Enabling QoS Rate Adjustment By default while rate limiting, policing, and shaping, Dell Networking OS does not include the Preamble, SFD, or the IFG fields. These fields are overhead; only the fields from MAC destination address to the CRC are used for forwarding and are included in these rate metering calculations.
  • Page 670: Enabling Strict-Priority Queueing

    Enabling Strict-Priority Queueing Strict-priority means that Dell Networking OS de-queues all packets from the assigned queue before servicing any other queues. • The strict-priority supersedes bandwidth-percentage configuration. • A queue with strict priority can starve other queues in the same port-pipe.
  • Page 671: Creating Wred Profiles

    Dell Networking OS assigns a color (also called drop precedence) — red, yellow, or green — to each packet based on it DSCP value before queuing it. DSCP is a 6–bit field. Dell Networking uses the first three bits (LSB) of this field (DP) to determine the drop precedence.
  • Page 672: Displaying Default And Configured Wred Profiles

    Pre-Calculating Available QoS CAM Space Before Dell Networking OS version 7.3.1, there was no way to measure the number of CAM entries a policy-map would consume (the number of CAM entries that a rule uses is not predictable; from 1 to 16 entries might be used per rule depending upon its complexity).
  • Page 673: Configuring Weights And Ecn For Wred

    • Verify that there are enough available CAM entries. test cam-usage Example of the test cam-usage Command Dell# test cam-usage service-policy input pmap_l2 port-set 0 Port-pipe | CAM Partition | Available CAM | Estimated CAM | Status ===================================================================== L2ACL...
  • Page 674: Global Service Pools With Wred And Ecn Settings

    A global buffer pool, whichis a shared buffer pool accessed by multiple queues when the minimum guaranteed buffers for the queue are consumed, can be configured on the Z9000 platform. Support for global service pools is now available. You can configure global service pools that are shared buffer pools accessed by multiple queues when the minimum guaranteed buffers for the queue are consumed.
  • Page 675: Configuring Wred And Ecn Attributes

    Z9000 platform. The functionality to configure a weight for WRED and ECN functionality for front-end ports is supported on the Z9000 platform. A global buffer pool that is a shared buffer pool accessed by multiple queues when the minimum guaranteed buffers for the queue are consumed can be configured on the Z9000 platform.
  • Page 676: Guidelines For Configuring Ecn For Classifying And Color-Marking Packets

    Dell(conf) #service-class wred weight backplane queue0 11 queue6 4 queue7 9 Create a global buffer pool that is a shared buffer pool accessed by multiple queues when the minimum guaranteed buffers for the queue are consumed. The Z9000 platform supports only pool mode...
  • Page 677: Sample Configuration To Mark Non-Ecn Packets As "Yellow" With Multiple Traffic Class

    Consider the example where there are no different traffic classes that is all the packets are egressing on the default ‘queue0’. Dell Networking OS can be configured as below to mark the non-ecn packets as yellow packets. ip access-list standard ecn_0...
  • Page 678 This way the entire 8-bit ToS field of the IPv4 header shall be used to classify traffic. The Dell Networking OS Release 9.3(0.0) supports the following QOS actions in the ingress policy based QOS: Rate Policing...
  • Page 679 • • You can now use the ‘ecn’ match qualifier along with the above TCP flag for classification. The following combination of match qualifiers is acceptable to be configured for the Dell Networking OS software through L3 ACL command: •...
  • Page 680: Sample Configuration To Mark Non-Ecn Packets As "Yellow" With Single Traffic Class

    Sample configuration to mark non-ecn packets as “yellow” with single traffic class Consider the use case where the packet with DSCP value “40” need to be enqueued in queue#2 and packets with DSCP value as 50 need to be enqueued in queue#3. And all the packets with ecn value as ‘0’ must be marked as ‘yellow’.
  • Page 681: Applying Layer 2 Match Criteria On A Layer 3 Interface

    Dell(conf)# policy-map-input l2p layer2 Apply the Layer 2 policy on a Layer 3 interface. INTERFACE mode Dell(conf-if-fo-1/4)# service-policy input l2p layer2 Applying DSCP and VLAN Match Criteria on a Service Queue You can configure Layer 3 class maps which contain both a Layer 3 Differentiated Services Code Point (DSCP) and IP VLAN IDs as match criteria to filter incoming packets on a service queue on the switch.
  • Page 682 Configure the DSCP value to be set on matched packets. QOS-POLICY-IN mode Dell(conf-qos-policy-in)#set ip-dscp 5 Create an input policy map. CONFIGURATION mode Dell(conf)#policy-map-input pp_policmap Create a service queue to associate the class map and QoS policy map. POLICY-MAP mode Dell(conf-policy-map-in)#service-queue 0 class-map pp_classmap qos-policy pp_qospolicy Quality of Service (QoS)
  • Page 683: Routing Information Protocol (Rip)

    Routing Information Protocol (RIP) Routing information protocol (RIP) is supported on Dell Networking OS. RIP is based on a distance-vector algorithm; it tracks distances or hop counts to nearby routers when establishing network connections. RIP protocol standards are listed in the Standards Compliance chapter.
  • Page 684: Implementation Information

    Implementation Information Dell Networking OS supports both versions of RIP and allows you to configure one version globally and the other version on interfaces or both versions on the interfaces. The following table lists the defaults for RIP in Dell Networking OS.
  • Page 685 After designating networks with which the system is to exchange RIP information, ensure that all devices on that network are configured to exchange RIP information. The Dell Networking OS default is to send RIPv1 and to receive RIPv1 and RIPv2. To change the RIP version globally, use the version command in ROUTER RIP mode.
  • Page 686 [120/1] via 29.10.10.12, 00:00:27, Fa 1/4 192.161.1.0/24 auto-summary 192.162.3.0/24 [120/1] via 29.10.10.12, 00:01:22, Fa 1/4 192.162.3.0/24 auto-summary Dell#show ip rip database Total number of routes in RIP database: 978 160.160.0.0/16 [120/1] via 29.10.10.12, 00:00:26, Fa 1/49 160.160.0.0/16 auto-summary 2.0.0.0/8 [120/1] via 29.10.10.12, 00:01:22, Fa 1/49 2.0.0.0/8...
  • Page 687 A prefix list is applied to incoming or outgoing routes. Those routes must meet the conditions of the prefix list; if not, Dell Networking OS drops the route. Prefix lists are globally applied on all interfaces running RIP. Configure the prefix list in PREFIX LIST mode prior to assigning it to the RIP process.
  • Page 688 Setting the Send and Receive Version To change the RIP version globally or on an interface in Dell Networking OS, use the following command. To specify the RIP version, use the version command in ROUTER RIP mode. To set an interface to receive only one or the other version, use the ip rip send version or the ip rip receive version commands in INTERFACE mode.
  • Page 689 Dell(conf-if)#ip rip receive version 2 The following example of the show ip protocols command confirms that both versions are sent out that interface. This interface no longer sends and receives the same RIP versions as Dell Networking OS does globally (shown in bold).
  • Page 690 routes received in RIP updates from other routes are advertised if you configure the default- information originate command. • Specify the generation of a default route in RIP. ROUTER RIP mode default-information originate [always] [metric value] [route-map route-map- name] – always: Enter the keyword always to always generate a default route. –...
  • Page 691: Rip Configuration Example

    Enable debugging of RIP. Example of the debug ip rip Command The following example shows the confirmation when you enable the debug function. Dell#debug ip rip RIP protocol debug is ON Dell# To disable RIP, use the no debug ip rip command.
  • Page 692 Figure 97. RIP Topology Example RIP Configuration on Core2 The following example shows how to configure RIPv2 on a host named Core2. Example of Configuring RIPv2 on Core 2 Core2(conf-if-te-2/3)# Core2(conf-if-te-2/3)#router rip Core2(conf-router_rip)#ver 2 Core2(conf-router_rip)#network 10.200.10.0 Core2(conf-router_rip)#network 10.300.10.0 Core2(conf-router_rip)#network 10.11.10.0 Core2(conf-router_rip)#network 10.11.20.0 Core2(conf-router_rip)#show config router rip...
  • Page 693 [120/1] via 10.11.20.1, 00:00:03, TenGigabitEthernet 2/3 192.168.2.0/24 auto-summary Core2# The following example shows the show ip route command to show the RIP setup on Core 2. Core2#show ip route Codes: C - connected, S - static, R - RIP, B - BGP, IN - internal BGP, EX - external BGP,LO - Locally Originated, O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2, E1 - OSPF external type 1, E2 - OSPF external type 2, i - IS-IS, L1 - IS-IS level-1,...
  • Page 694 RIP Configuration on Core3 The following example shows how to configure RIPv2 on a host named Core3. Example of Configuring RIPv2 on Core3 Core3(conf-if-te-3/21)#router rip Core3(conf-router_rip)#version 2 Core3(conf-router_rip)#network 192.168.1.0 Core3(conf-router_rip)#network 192.168.2.0 Core3(conf-router_rip)#network 10.11.30.0 Core3(conf-router_rip)#network 10.11.20.0 Core3(conf-router_rip)#show config router rip network 10.0.0.0 network 192.168.1.0 network 192.168.2.0 version 2...
  • Page 695 Gateway of last resort is not set Destination Gateway Dist/Metric Last Change ----------- ------- ----------- ----------- 10.11.10.0/24 via 10.11.20.2, Te 3/21 120/1 00:01:14 10.11.20.0/24 Direct, Te 3/21 00:01:53 10.11.30.0/24 Direct, Te 3/11 00:06:00 10.200.10.0/24 via 10.11.20.2, Te 3/21 120/1 00:01:14 10.300.10.0/24 via 10.11.20.2, Te 3/21 120/1 00:01:14 192.168.1.0/24 Direct, Te...
  • Page 696 no shutdown interface TenGigabitEthernet 2/5 ip address 10.250.10.1/24 no shutdown router rip version 2 10.200.10.0 10.300.10.0 10.11.10.0 10.11.20.0 The following example shows viewing the RIP configuration on Core 3. interface TenGigabitEthernet 3/1 ip address 10.11.30.1/24 no shutdown interface TenGigabitEthernet 3/2 ip address 10.11.20.1/24 no shutdown interface TenGigabitEthernet 3/4...
  • Page 697: Remote Monitoring (Rmon)

    Remote Monitoring (RMON) Remote monitoring (RMON) is supported on Dell Networking OS. RMON is an industry-standard implementation that monitors network traffic by sharing network monitoring information. RMON provides both 32-bit and 64-bit monitoring facility and long-term statistics collection on Dell Networking Ethernet interfaces.
  • Page 698: Setting The Rmon Alarm

    The sampling process continues after the chassis returns to operation. • Platform Adaptation — RMON supports all Dell Networking chassis and all Dell Networking Ethernet interfaces. Setting the rmon Alarm To set an alarm on any MIB object, use the rmon alarm or rmon hc-alarm command in GLOBAL CONFIGURATION mode.
  • Page 699: Configuring An Rmon Event

    This configuration also generates an SNMP trap when the event is triggered using the SNMP community string “eventtrap”. Dell(conf)#rmon event 1 log trap eventtrap description “High ifOutErrors” owner nms1 Remote Monitoring (RMON)
  • Page 700: Configuring Rmon Collection Statistics

    The following command example enables the RMON statistics collection on the interface, with an ID value of 20 and an owner of john. Dell(conf-if-mgmt)#rmon collection statistics controlEntry 20 owner john Configuring the RMON Collection History To enable the RMON MIB history group of statistics collection on an interface, use the rmon collection history command in INTERFACE CONFIGURATION mode.
  • Page 701 The following command example enables an RMON MIB collection history group of statistics with an ID number of 20 and an owner of john, both the sampling interval and the number of buckets use their respective defaults. Dell(conf-if-mgmt)#rmon collection history controlEntry 20 owner john Remote Monitoring (RMON)
  • Page 702: Rapid Spanning Tree Protocol (Rstp)

    (STP) but provides faster convergence and interoperability with switches configured with STP and multiple spanning tree protocol (MSTP). The Dell Networking OS supports three other variations of spanning tree, as shown in the following table. Table 46. Spanning Tree Variations Dell Networking OS Supports...
  • Page 703: Important Points To Remember

    Adding a group of ports to a range of VLANs sends multiple messages to the rapid spanning tree protocol (RSTP) task, avoid using the range command. When using the range command, Dell Networking recommends limiting the range to five ports and 40 VLANs.
  • Page 704: Enabling Rapid Spanning Tree Protocol Globally

    To disable RSTP globally for all Layer 2 interfaces, enter the disable command from PROTOCOL SPANNING TREE RSTP mode. To verify that RSTP is enabled, use the show config command from PROTOCOL SPANNING TREE RSTP mode. The bold line indicates that RSTP is enabled. Dell(conf-rstp)#show config protocol spanning-tree rstp no disable Dell(conf-rstp)#...
  • Page 705 If a physical interface is part of a port channel, only the port channel is listed in the command output. Dell#show spanning-tree rstp Root Identifier has priority 32768, Address 0001.e801.cbb4 Root Bridge hello time 2, max age 20, forward delay 15, max hops 0 Bridge Identifier has priority 32768, Address 0001.e801.cbb4...
  • Page 706: Adding And Removing Interfaces

    BPDU : sent 121, received 2 The port is not in the Edge port mode Port 379 (TenGigabitEthernet 2/3) is designated Forwarding Port path cost 20000, Port priority 128, Port Identifier 128.379 Designated root has priority 32768, address 0001.e801.cbb4 Designated bridge has priority 32768, address 0001.e801.cbb4 Designated port id is 128.379, designated path cost 0 Number of transitions to forwarding state 1 BPDU : sent 121, received 5...
  • Page 707: Modifying Global Parameters

    Max-age — the length of time the bridge maintains configuration information before it refreshes that information by recomputing the RST topology. NOTE: Dell Networking recommends that only experienced network administrators change the Rapid Spanning Tree group parameters. Poorly planned modification of the RSTP parameters can negatively affect network performance.
  • Page 708: Enabling Snmp Traps For Root Elections And Topology Changes

    NOTE: With large configurations (especially those configurations with more ports) Dell Networking recommends increasing the hello-time. The range is from 1 to 10. The default is 2 seconds. • Change the max-age parameter. PROTOCOL SPANNING TREE RSTP mode max-age seconds The range is from 6 to 40.
  • Page 709: Enabling Snmp Traps For Root Elections And Topology Changes

    PortFast mode in Spanning Tree. CAUTION: Configure EdgePort only on links connecting to an end station. If you enable EdgePort on an interface connected to a network, it can cause loops. Dell Networking OS Behavior: Regarding bpduguard shutdown-on-violation behavior: Rapid Spanning Tree Protocol (RSTP)
  • Page 710: Configuring Fast Hellos For Link State Detection

    To verify that EdgePort is enabled on a port, use the show spanning-tree rstp command from EXEC privilege mode or the show config command from INTERFACE mode. NOTE: Dell Networking recommends using the show config command from INTERFACE mode. In the following example, the bold line indicates that the interface is in EdgePort mode.
  • Page 711 The range is from 50 to 950 milliseconds. Example of Verifying Hello-Time Interval Dell(conf-rstp)#do show spanning-tree rstp brief Executing IEEE compatible Spanning Tree Protocol Root ID Priority 0, Address 0001.e811.2233 Root Bridge hello time 50 ms, max age 20, forward delay 15 Bridge ID Priority 0, Address 0001.e811.2233...
  • Page 712: Software-Defined Networking (Sdn)

    Software-Defined Networking (SDN) Dell Networking operating software supports Software-Defined Networking (SDN). For more information, refer to the SDN Deployment Guide. Software-Defined Networking (SDN)
  • Page 713: Security

    Security features are supported on Dell Networking OS. This chapter describes several ways to provide security to the Dell Networking system. For details about all the commands described in this chapter, refer to the Security chapter in the Dell Networking OS Command Reference Guide.
  • Page 714 – tacacs+: designate the security service. Currently, Dell Networking OS supports only TACACS+. Suppressing AAA Accounting for Null Username Sessions When you activate AAA accounting, the Dell Networking OS software issues accounting records for all users on the system, including users whose username string is NULL because of protocol translation.
  • Page 715: Aaa Authentication

    With AAA, you can specify the security protocol or mechanism for different login methods and different users. In Dell Networking OS, AAA uses a list of authentication methods, called method lists, to define the types of authentication and the sequence in which they are applied. You can define a method list or use the default method list.
  • Page 716: Configuration Task List For Aaa Authentication

    If the first method list does not respond or returns an error, Dell Networking OS applies the next method list until the user either passes or fails the authentication. If the user fails a method list, Dell Networking OS does not apply the next method list.
  • Page 717 To view the configuration, use the show config command in LINE mode or the show running- config in EXEC Privilege mode. NOTE: Dell Networking recommends using the none method only as a backup. This method does not authenticate users. The none and enable methods do not work with secure shell (SSH).
  • Page 718: Obscuring Passwords And Keys

    Dell(config-line-vty)# enable authentication mymethodlist Server-Side Configuration • TACACS+ — When using TACACS+, Dell Networking sends an initial packet with service type SVC_ENABLE, and then sends a second packet with just the password. The TACACS server must have an entry for username $enable$.
  • Page 719: Aaa Authorization

    Every command in Dell Networking OS is assigned a privilege level of 0, 1, or 15. You can configure up to 16 privilege levels in Dell Networking OS. Dell Networking OS is pre-configured with three privilege levels and you can configure 13 more.
  • Page 720 Security chapter in the Dell Networking OS Command Reference Guide. Configuring a Username and Password In Dell Networking OS, you can assign a specific username to limit user access to the system. To configure a username and password, use the following command.
  • Page 721 In custom-configured privilege levels, the enable command is always available. No matter what privilege level you entered Dell Networking OS, you can enter the enable 15 command to access and configure all CLIs. Configuring Custom Privilege Levels In addition to assigning privilege levels to the user, you can configure the privilege levels of commands so that they are visible in different privilege levels.
  • Page 722 0 to 15. Levels 0, 1, and 15 are pre-configured. Levels 2 to 14 are available for custom configuration. • command: an Dell Networking OS CLI keyword (up to five keywords allowed). • reset: return the command to its default privilege mode.
  • Page 723 • Set a user’s security level. EXEC Privilege mode enable or enable privilege-level If you do not enter a privilege level, Dell Networking OS sets it to 15 by default. • Move to a lower privilege level. EXEC Privilege mode disable level-number –...
  • Page 724 The Z9000 system boots up with factory default configuration. The default Dell> system prompt displays when the system boots. Copy the startup-config into the running-config. To display the content of the startup-config, remove the previous authentication configuration and set the new authentication parameters.
  • Page 725: Radius

    This protocol transmits authentication, authorization, and configuration information between a central RADIUS server and a RADIUS client (the Dell Networking system). The system sends user information to the RADIUS server and requests authentication of the user and password. The RADIUS server returns one of the following responses: •...
  • Page 726: Configuration Task List For Radius

    Monitoring RADIUS (optional) For a complete listing of all Dell Networking OS commands related to RADIUS, refer to the Security chapter in the Dell Networking OS Command Reference Guide. NOTE: RADIUS authentication and authorization are done in a single step. Hence, authorization cannot be used independent of authentication.
  • Page 727 • Create a method list with RADIUS and TACACS+ as authorization methods. CONFIGURATION mode aaa authorization exec {method-list-name | default} radius tacacs+ Typical order of methods: RADIUS, TACACS+, Local, None. If RADIUS denies authorization, the session ends (RADIUS must not be the last method specified). Applying the Method List to Terminal Lines To enable RADIUS AAA login authentication for a method list, apply it to a terminal line.
  • Page 728 To specify multiple RADIUS server hosts, configure the radius-server host command multiple times. If you configure multiple RADIUS server hosts, Dell Networking OS attempts to connect with them in the order in which they were configured. When Dell Networking OS attempts to authenticate a user, the software connects with the RADIUS server hosts one at a time, until a RADIUS server host responds with an accept or reject response.
  • Page 729: Tacacs

    TACACS+ Remote Authentication • Specifying a TACACS+ Server Host For a complete listing of all commands related to TACACS+, refer to the Security chapter in the Dell Networking OS Command Reference Guide. Choosing TACACS+ as the Authentication Method One of the login authentication methods available is TACACS+ and the user’s name and password are sent for authentication to the TACACS hosts specified.
  • Page 730 For example, if the TACACS+ server is reachable, but the server key is invalid, Dell Networking OS proceeds to the next authentication method. In the following example, the TACACS+ is incorrect, but the user is still authenticated by the secondary method.
  • Page 731: Tacacs+ Remote Authentication

    Example of Connecting with a TACACS+ Server Host To specify multiple TACACS+ server hosts, configure the tacacs-server host command multiple times. If you configure multiple TACACS+ server hosts, Dell Networking OS attempts to connect with them in the order in which they were configured.
  • Page 732: Command Authorization

    Secure shell (SSH) is a protocol for secure remote login and other secure network services over an insecure network. Dell Networking OS is compatible with SSH versions 1.5 and 2, in both the client and server modes. SSH sessions are encrypted and use authentication. SSH is enabled by default.
  • Page 733: Using Scp With Ssh To Copy A Software Image

    Specifying an SSH Version The following example uses the ip ssh server version 2 command to enable SSH version 2 and the show ip ssh command to confirm the setting. Dell(conf)#ip ssh server version 2 Dell(conf)#do show ip ssh SSH server : enabled.
  • Page 734: Configuring When To Re-Generate An Ssh Key

    The default is 1024 megabytes. Examples The following example configures the time-based rekey threshold for an SSH session to 30 minutes. Dell(conf)#ip ssh rekey time 30 The following example configures the volume-based rekey threshold for an SSH session to 4096 megabytes.
  • Page 735: Configuring The Hmac Algorithm For The Ssh Server

    Example of Configuring a HMAC Algorithm The following example shows you how to configure a HMAC algorithm list. Dell(conf)# ip ssh server mac hmac-sha1-96 Configuring the SSH Server Cipher List To configure the cipher list supported by the SSH server, use the ip ssh server cipher cipher-list command in CONFIGURATION mode.
  • Page 736: Secure Shell Authentication

    Secure Shell (SSH) is enabled by default using the SSH Password Authentication method. Enabling SSH Authentication by Password Authenticate an SSH client by prompting for a password when attempting to connect to the Dell Networking system. This setup is the simplest method of authentication and uses SSH version 1.
  • Page 737 Create a list of IP addresses and usernames that are permitted to SSH in a file called rhosts. Refer to the second example. Copy the file shosts and rhosts to the Dell Networking system. Disable password authentication and RSA authentication, if configured...
  • Page 738 • SSH from the chassis to the SSH client. ssh ip_address Example of Client-Based SSH Authentication Dell#ssh 10.16.127.201 ? Encryption cipher to use (for v2 clients only) User name option HMAC algorithm to use (for v2 clients only) SSH server port option (default 22)
  • Page 739: Troubleshooting Ssh

    Dell(conf)#ip telnet server enable Dell(conf)#no ip telnet server enable VTY Line and Access-Class Configuration Various methods are available to restrict VTY access in Dell Networking OS. These depend on which authentication scheme you use — line, local, or remote. Table 48. VTY Access...
  • Page 740: Vty Line Local Authentication And Authorization

    Dell Networking OS can assign different access classes to different users by username. Until users attempt to log in, Dell Networking OS does not know if they will be assigned a VTY line. This means that incoming users always see a login prompt even if you have excluded them from the VTY line with a deny- all access class.
  • Page 741: Vty Mac-Sa Filter Support

    (same applies for radius and line authentication) VTY MAC-SA Filter Support Dell Networking OS supports MAC access lists which permit or deny users based on their source MAC address. With this approach, you can implement a security policy based on the source MAC address.
  • Page 742: Overview Of Rbac

    Each user can be assigned only a single role. Many users can have the same role. The Dell Networking OS supports the constrained RBAC model. With a constrained RBAC model, you can inherit permissions when you create a new user role, restrict or add commands a user can enter and the actions the user can perform.
  • Page 743 When you enable role-based only AAA authorization using the aaa authorization role-only command in Configuration mode, the Dell Networking OS checks to ensure that you do not lock yourself out and that the user authentication is available for all terminal lines.
  • Page 744: User Roles

    To enable role-based only AAA authorization: Dell(conf)#aaa authorization role-only System-Defined RBAC User Roles By default, the Dell Networking OS provides 4 system defined user roles. You can create up to 8 additional user roles. NOTE: You cannot delete any system defined roles.
  • Page 745 (secadmin) permissions. Create a new user role, myrole and inherit security administrator permissions. Dell(conf)#userrole myrole inherit secadmin Verify that the user role, myrole, has inherited the security administrator permissions. The output highlighted in bold indicates that the user role has successfully inherited the security administrator permissions.
  • Page 746 Note that the netadmin role is not listed in the Role access: secadmin,sysadmin, which means the netadmin cannot access the show users command. Dell(conf)#role exec deleterole netadmin show users Dell#show role mode exec show users Role access: secadmin,sysadmin...
  • Page 747 However, the secadmin can only access 10-Gigabit Ethernet interfaces. Dell(conf)#role configure addrole secadmin ? LINE Initial keywords of the command to modify Dell(conf)#role configure addrole secadmin interface tengigabitethernet Dell(conf)#show role mode configure interface Role access: netadmin, secadmin, sysadmin Example: Verify that the Security Administrator Can Access Interface Mode The following example shows that the secadmin role can now access Interface mode (highlighted in bold).
  • Page 748: Aaa Authentication And Authorization For Roles

    Example The following example creates a user name that is authenticated based on a user role. Dell (conf) #username john password 0 password role secadmin The following example deletes a user role. NOTE: If you already have a user ID that exists with a privilege level, you can add the user role to...
  • Page 749 When role-based only AAA authorization is enabled, the enable, line, and none methods are not available. Each of these three methods allows users to be verified with either a password that is not specific to their user ID or with no password at all. Because of the lack of security these methods are not available for role only mode.
  • Page 750 For RBAC and privilege levels, the Dell Networking OS RADIUS and TACACS+ implementation supports two vendor-specific options: privilege level and roles. The Dell Networking vendor-ID is 6027 and the supported option has attribute of type string, which is titled “Force10-avpair”. The value is a string in the...
  • Page 751: Role Accounting

    The following example configures an AV pair which allows a user to login from a network access server with a privilege level of 15, to have access to EXEC commands. The format to create a Dell Network OS AV pair for privilege level is shell:priv-lvl=<number> where number is a value between 0 and 15.
  • Page 752: Display Information About User Roles

    The following example applies the accounting default method to the user role secadmin (security administrator). Dell(conf-vty-0)# accounting commands role secadmin default Displaying Active Accounting Sessions for Roles To display active accounting sessions for each user role, use the show accounting command in EXEC mode.
  • Page 753 Line Configuration mode route-map Route map configuration mode router Router configuration mode Dell#show role mode configure username Role access: sysadmin Dell##show role mode configure password-attributes Role access: secadmin,sysadmin Dell#show role mode configure interface Role access: netadmin, sysadmin Dell#show role mode configure line...
  • Page 754: Service Provider Bridging

    Service Provider Bridging Service provider bridging is supported on Dell Networking OS. VLAN Stacking VLAN stacking, also called Q-in-Q, is defined in IEEE 802.1ad — Provider Bridges, which is an amendment to IEEE 802.1Q — Virtual Bridged Local Area Networks. It enables service providers to use 802.1Q architecture to offer separate VLANs to customers with no coordination between customers, and minimal coordination between customers and the provider.
  • Page 755: Important Points To Remember

    To switch traffic, add these interfaces to a non-default VLAN- Stack-enabled VLAN. • Dell Networking cautions against using the same MAC address on different customer VLANs, on the same VLAN-Stack VLAN. • This limitation becomes relevant if you enable the port as a multi-purpose port (carrying single- tagged and double-tagged traffic).
  • Page 756: Configure Vlan Stacking

    Enabling VLAN-Stacking for a VLAN. Related Configuration Tasks • Configuring the Protocol Type Value for the Outer VLAN Tag • Configuring Dell Networking OS Options for Trunk Ports • Debugging VLAN Stacking • VLAN Stacking in Multi-Vendor Networks Creating Access and Trunk Ports To create access and trunk ports, use the following commands.
  • Page 757: Enable Vlan-Stacking For A Vlan

    The default is 9100. To display the S-Tag TPID for a VLAN, use the show running-config command from EXEC privilege mode. Dell Networking OS displays the S-Tag TPID only if it is a non-default value. Configuring Dell Networking OS Options for Trunk Ports 802.1ad trunk ports may also be tagged members of a VLAN so that it can carry single and double-tagged...
  • Page 758: Debugging Vlan Stacking

    In the following example, TenGigabitEthernet 1/1 is a trunk port that is configured as a hybrid port and then added to VLAN 100 as untagged VLAN 101 as tagged, and VLAN 103, which is a stacking VLAN. Dell(conf)#interface tenigabitethernet 1/1 Dell(conf-if-te-1/1)#portmode hybrid...
  • Page 759: Vlan Stacking In Multi-Vendor Networks

    While 802.1Q requires that the inner tag TPID is 0x8100, it does not require a specific value for the outer tag TPID. Systems may use any 2-byte value; Dell Networking OS uses 0x9100 (shown in the following) while non-Dell Networking systems might use a different value.
  • Page 760 Figure 100. Single and Double-Tag TPID Match Service Provider Bridging...
  • Page 761 Figure 101. Single and Double-Tag First-byte TPID Match Service Provider Bridging...
  • Page 762: Vlan Stacking Packet Drop Precedence

    Figure 102. Single and Double-Tag TPID Mismatch VLAN Stacking Packet Drop Precedence The drop eligible indicator (DEI) bit in the S-Tag indicates to a service provider bridge which packets it should prefer to drop when congested. Enabling Drop Eligibility Enable drop eligibility globally before you can honor or mark the DEI value. When you enable drop eligibility, DEI mapping or marking takes place according to the defaults.
  • Page 763: Honoring The Incoming Dei Value

    By default, packets are colored green, and DEI is marked 0 on egress. Honoring the Incoming DEI Value To honor the incoming DEI value, you must explicitly map the DEI bit to an Dell Networking OS drop precedence. Precedence can have one of three colors.
  • Page 764: Marking Egress Packets With A Dei Value

    {green | yellow} {0 | 1} Example of Viewing DEI-Marking Configuration To display the DEI-marking configuration, use the show interface dei-mark [interface slot/ port | linecard number port-set number] in EXEC Privilege mode. Dell#show interface dei-mark Default CFI/DEI Marking: 0 Interface Drop precedence CFI/DEI --------------------------------...
  • Page 765 1:8 expansion in these content addressable memory (CAM) tables. Dell Networking OS Behavior: For Option A shown in the previous illustration, when there is a conflict between the queue selected by Dynamic Mode CoS (vlan-stack dot1p-mapping) and a QoS configuration, the queue selected by Dynamic Mode CoS takes precedence.
  • Page 766: Mapping C-Tag To S-Tag Dot1P Values

    service-policy input in layer2 no shutdown Mapping C-Tag to S-Tag dot1p Values To map C-Tag dot1p values to S-Tag dot1p values and mark the frames accordingly, use the following commands. Allocate CAM space to enable queuing frames according to the C-Tag or the S-Tag. CONFIGURATION mode cam-acl l2acl number ipv4acl number ipv6acl number ipv4qos number l2qos number l2pt number ipmacacl number ecfmacl number {vman-qos | vman-qos-dual-...
  • Page 767 MAC address rewritten to the original MAC address and forwarded to the opposing network region (shown in the following illustration). Dell Networking OS Behavior: In Dell Networking OS versions prior to 8.2.1.0, the MAC address that Dell Networking systems use to overwrite the Bridge Group Address on ingress was non-configurable. The value of the L2PT MAC address was the Dell Networking-unique MAC address, 01-01-e8-00-00-00.
  • Page 768: Implementation Information

    Dell Networking OS could recognize the significance of the destination MAC address and rewrite it to the original Bridge Group Address. In Dell Networking OS version 8.2.1.0 and later, the L2PT MAC address is user-configurable, so you can specify an address that non-Dell Networking systems can recognize and rewrite the address at egress edge.
  • Page 769: Enabling Layer 2 Protocol Tunneling

    Specifying a Destination MAC Address for BPDUs By default, Dell Networking OS uses a Dell Networking-unique MAC address for tunneling BPDUs. You can configure another value. To specify a destination MAC address for BPDUs, use the following command.
  • Page 770: Debugging Layer 2 Protocol Tunneling

    Set a maximum rate at which the RPM processes BPDUs for L2PT. VLAN STACKING mode protocol-tunnel rate-limit The default is: no rate limiting. The range is from 64 to 320 kbps. Debugging Layer 2 Protocol Tunneling To debug Layer 2 protocol tunneling, use the following command. •...
  • Page 771: Sflow

    Implementation Information Dell Networking sFlow is designed so that the hardware sampling rate is per line card port-pipe and is decided based on all the ports in that port-pipe. If you do not enable sFlow on any port specifically, the global sampling rate is downloaded to that port and is to calculate the port-pipe’s lowest sampling rate.
  • Page 772: Important Points To Remember

    Configuration and EIS modes respectively. • Dell Networking OS exports all sFlow packets to the collector. A small sampling rate can equate to many exported packets. A backoff mechanism is automatically applied to reduce this amount. Some sampled packets may be dropped when the exported packet rate is high and the backoff mechanism is about to or is starting to take effect.
  • Page 773: Enabling And Disabling Sflow On An Interface

    Te 1/1: configured rate 16384, actual rate 16384 Dell# If you did not enable any extended information, the show output displays the following (shown in bold). Dell#show sflow sFlow services are disabled Global default sampling rate: 32768 Global default counter polling interval: 20...
  • Page 774: Sflow Show Commands

    Show Commands Dell Networking OS includes the following sFlow display commands. • Displaying Show sFlow Globally • Displaying Show sFlow on an Interface • Displaying Show sFlow on a Line Card Displaying Show sFlow Global To view sFlow statistics, use the following command.
  • Page 775: Displaying Show Sflow On An Interface

    Display sFlow configuration information and statistics on a specific interface. EXEC mode show sflow interface interface-name Examples of the sFlow show Commands The following example shows the show sflow interface command. Dell#show sflow interface tengigabitethernet 1/1 Te 1/1 sFlow type :Ingress Configured sampling rate...
  • Page 776: Displaying Show Sflow On A Stack-Unit

    • Display sFlow configuration information and statistics on the specified interface. EXEC mode show sflow stack—unit slot-number Example of Viewing sFlow Configuration (Line Card) Dell#show sflow stack-unit 1 stack-unit 1 Samples rcvd from h/w :165 Samples dropped for sub-sampling :69...
  • Page 777: Back-Off Mechanism

    Confirm that extended information packing is enabled. show sflow Examples of Verifying Extended sFlow The bold line shows that extended sFlow settings are enabled on all three types. Dell#show sflow sFlow services are enabled Egress Management Interface sFlow services are disabled Global default sampling rate: 32768...
  • Page 778: Important Points To Remember

    • To export extended-gateway data, BGP must learn the IP destination address. • If the IP destination address is not learned via BGP the Dell Networking system does not export extended-gateway data. • If the IP source address is learned via IGP, srcAS and srcPeerAS are zero.
  • Page 779 IP SA IP DA srcAS and dstAS and Description srcPeerAS dstPeerAS IP DA is not learned via BGP. Version 7.8.1.0 allows extended gateway information in cases where the source and destination IP addresses are learned by different routing protocols, and for cases where is source is reachable over ECMP.
  • Page 780: Simple Network Management Protocol (Snmp)

    The following describes SNMP implementation information. • Dell Networking OS supports SNMP version 1 as defined by RFC 1155, 1157, and 1212, SNMP version 2c as defined by RFC 1901, and SNMP version 3 as defined by RFC 2571. •...
  • Page 781 AES-CFB 128 encryption algorithm needs to be used. Dell(conf)#snmp-server user snmpguy snmpmon 3 auth sha AArt61wq priv aes128 jntRR59a In this example, for a specified user and a group, the AES128-CFB algorithm, the authentication password to enable the server to receive packets from the host, and the privacy password to encode the message contents are configured.
  • Page 782: Configuration Task List For Snmp

    NOTE: The configurations in this chapter use a UNIX environment with net-snmp version 5.4. This environment is only one of many RFC-compliant SNMP utilities you can use to manage your Dell Networking system using SNMP. Also, these configurations use SNMP version 2c.
  • Page 783: Creating A Community

    Dell Networking OS enables SNMP automatically when you create an SNMP community and displays the following message. You must specify whether members of the community may only retrieve values (read), or retrieve and alter values (read-write).
  • Page 784: Reading Managed Object Values

    You may only retrieve (read) managed object values if your management station is a member of the same community as the SNMP agent. Dell Networking supports RFC 4001, Textual Conventions for Internet Work Addresses that defines values representing a type of internet address. These values display for ipAddressTable objects using the snmpwalk command.
  • Page 785: Writing Managed Object Values

    > snmpwalk -v 2c -c mycommunity 10.11.131.161 .1.3.6.1.2.1.1 SNMPv2-MIB::sysDescr.0 = STRING: Dell Real Time Operating System Software Dell Operating System Version: 1.0 Dell Application Software Version: E_MAIN4.9.4.0.0 Copyright (c) 1999-2014 by Dell Build Time: Mon May 12 14:02:22 PDT 2008 SNMPv2-MIB::sysObjectID.0 = OID: SNMPv2-SMI::enterprises.6027.1.3.1...
  • Page 786: Configuring Contact And Location Information Using Snmp

    You may use up to 55 characters. The default is None. • (From a Dell Networking system) Identify the physical location of the system (for example, San Jose, 350 Holger Way, 1st floor lab, rack A1-1). CONFIGURATION mode snmp-server location text You may use up to 55 characters.
  • Page 787: Subscribing To Managed Object Value Updates Using Snmp

    Subscribing to Managed Object Value Updates using SNMP By default, the Dell Networking system displays some unsolicited SNMP messages (traps) upon certain events and conditions. You can also configure the system to send the traps to a management station. Traps cannot be saved on the system.
  • Page 788: Enabling A Subset Of Snmp Traps

    PORT_LINKUP:changed interface state to up:%d Enabling a Subset of SNMP Traps You can enable a subset of Dell Networking enterprise-specific SNMP traps using one of the following listed command options. To enable a subset of Dell Networking enterprise-specific SNMP traps, use the following command.
  • Page 789 envmon fan FAN_TRAY_BAD: Major alarm: fantray %d is missing or down FAN_TRAY_OK: Major alarm cleared: fan tray %d present FAN_BAD: Minor alarm: some fans in fan tray %d are down FAN_OK: Minor alarm cleared: all fans in fan tray %d are good Enable VLT traps.
  • Page 790: Copy Configuration Files Using Snmp

    • copy the running-config file to the startup-config file • copy configuration files from the Dell Networking system to a server • copy configuration files from a server to the Dell Networking system You can perform all of these tasks using IPv4 or IPv6 addresses. The examples in this section use IPv4 addresses;...
  • Page 791 MIB Object Object Values Description 1 = Dell Networking OS copyDestFileType Specifies the type of file file 1.3.6.1.4.1.6027.3.5.1.1.1. to copy to. • 2 = running-config copySourceFileType is running-config or 3 = startup-config startup-config, the default copyDestFileLocatio n is flash. •...
  • Page 792: Copying A Configuration File

    CONFIGURATION mode snmp-server community community-name rw Copy the f10-copy-config.mib MIB from the Dell iSupport web page to the server to which you are copying the configuration file. On the server, use the snmpset command as shown in the following example.
  • Page 793: Copying The Startup-Config Files To The Running-Config

    • Copy the running-config to the startup-config from the UNIX machine. snmpset -v 2c -c public force10system-ip-address copySrcFileType.index i 2 copyDestFileType.index i 3 Examples of Copying Configuration Files The following examples show the command syntax using MIB object names and the same command using the object OIDs.
  • Page 794: Copying The Startup-Config Files To The Server Via Tftp

    /home/myfilename copyServerAddress.4 a 11.11.11.11 Copy a Binary File to the Startup-Configuration To copy a binary file from the server to the startup-configuration on the Dell Networking system via FTP, use the following command. • Copy a binary file from the server to the startup-configuration on the Dell Networking system via FTP.
  • Page 795: Additional Mib Objects To View Copy Statistics

    172.16.1.56 copyUserName.10 s mylogin copyUserPassword. 10 s mypass Additional MIB Objects to View Copy Statistics Dell Networking provides more MIB objects to view copy statistics, as shown in the following table. Table 52. Additional MIB Objects for Copying Configuration Files via SNMP MIB Object...
  • Page 796: Mib Support To Display The Available Memory Size On Flash

    MIB Support to Display the Available Memory Size on Flash Dell Networking provides more MIB objects to display the available memory size on flash memory. The following table lists the MIB object that contains the available memory size on flash memory.
  • Page 797: Mib Support To Display The Software Core Files Generated By The System

    MIB Support to Display the Software Core Files Generated by the System Dell Networking provides MIB objects to display the software core files generated by the system. The chSysSwCoresTable contains the list of software core files generated by the system. The following table lists the related MIB objects.
  • Page 798: Manage Vlans Using Snmp

    1.3.6.1.2.1.17.7.1.4.3.1.1.1107787786 s "My VLAN" SNMPv2-SMI::mib-2.17.7.1.4.3.1.1.1107787786 = STRING: "My VLAN" [Dell system output] Dell#show int vlan 10 Vlan 10 is down, line protocol is down Vlan alias name is: My VLAN Address is 00:01:e8:cc:cc:ce, Current address is 00:01:e8:cc:cc:ce Interface index is 1107787786...
  • Page 799: Displaying The Ports In A Vlan

    Displaying the Ports in a VLAN Dell Networking OS identifies VLAN interfaces using an interface index number that is displayed in the output of the show interface vlan command. Add Tagged and Untagged Ports to a VLAN The value dot1qVlanStaticEgressPorts object is an array of all VLAN members.
  • Page 800: Managing Overload On Startup

    To enable and disable a port using SNMP, use the following commands. Create an SNMP community on the Dell system. CONFIGURATION mode snmp-server community From the Dell Networking system, identify the interface index of the port for which you want to change the admin status. EXEC Privilege mode show interface Or, from the management system, use the snmpwwalk command to identify the interface index.
  • Page 801: Fetch Dynamic Mac Entries Using Snmp

    Choose integer 1 to change the admin status to Up, or 2 to change the admin status to Down. Fetch Dynamic MAC Entries using SNMP Dell Networking supports the RFC 1493 dot1d table for the default VLAN and the dot1q table for all other VLANs.
  • Page 802: Deriving Interface Indices

    The interface index is a binary number with bits that indicate the slot number, port number, interface type, and card type of the interface. Dell Networking OS converts this binary index number to decimal, and displays it in the output of the show interface command.
  • Page 803: Monitor Port-Channels

    Flash Partition B. The system image can also be retrieved by performing an SNMP walk on the following OID: MIB Object is chSysSwModuleTable and the OID is 1.3.6.1.4.1.6027.3.10.1.2.8. Dell#show interface Tengigabitethernet 1/21 TenGigabitEthernet 1/21 is up, line protocol is up Monitor Port-Channels To check the status of a Layer 2 port-channel, use f10LinkAggMib (.1.3.6.1.4.1.6027.3.2).
  • Page 804: Troubleshooting Snmp Operation

    SNMPv2-SMI::enterprises.6027.3.1.1.4.1.2 = STRING: "OSTATE_UP: Changed interface state to up: Po 1" Troubleshooting SNMP Operation When you use SNMP to retrieve management data from an SNMP agent on a Dell Networking router, take into account the following behavior. • When you query an IPv4 icmpMsgStatsInPkts object in the ICMP table by using the snmpwalk command, the output for echo replies may be incorrectly displayed.
  • Page 805 • When you query an icmpStatsInErrors object in the icmpStats table by using the snmpget or snmpwalk command, the output for IPv4 addresses may be incorrectly displayed. To correctly display this information under IP and ICMP statistics, use the show ip traffic command. •...
  • Page 806: Storm Control

    The storm control feature allows you to control unknown-unicast and broadcast traffic on Layer 2 and Layer 3 physical interfaces. Dell Networking Operating System (OS) Behavior: Dell Networking OS supports broadcast control (the storm-control broadcast command) for Layer 2 and Layer 3 traffic.
  • Page 807: Spanning Tree Protocol (Stp)

    CPU utilization and memory consumption. Dell Networking OS supports three other variations of spanning tree, as shown in the following table. Table 57. Dell Networking OS Supported Spanning Tree Protocols...
  • Page 808: Important Points To Remember

    STP is disabled by default. • The Dell Networking OS supports only one spanning tree instance (0). For multiple instances, enable the multiple spanning tree protocol (MSTP) or per-VLAN spanning tree plus (PVST+). You may only enable one flavor of spanning tree at any one time.
  • Page 809: Enabling Spanning Tree Protocol Globally

    INTERFACE mode no shutdown Example of the show config Command To verify that an interface is in Layer 2 mode and enabled, use the show config command from INTERFACE mode. Dell(conf-if-te-1/1)#show config interface TenGigabitEthernet 1/1 no ip address switchport no shutdown...
  • Page 810 To disable STP globally for all Layer 2 interfaces, use the disable command from PROTOCOL SPANNING TREE mode. To verify that STP is enabled, use the show config command from PROTOCOL SPANNING TREE mode. Dell(conf)#protocol spanning-tree 0 Dell(config-span)#show config protocol spanning-tree 0...
  • Page 811: Adding An Interface To The Spanning Tree Group

    The port is not in the portfast mode To confirm that a port is participating in Spanning Tree, use the show spanning-tree 0 brief command from EXEC privilege mode. Dell#show spanning-tree 0 brief Executing IEEE compatible Spanning Tree Protocol Root ID Priority 32768, Address 0001.e80d.2462...
  • Page 812: Modifying Global Parameters

    You can modify the spanning tree parameters. The root bridge sets the values for forward-delay, hello- time, and max-age and overwrites the values set on other bridges participating in STP. NOTE: Dell Networking recommends that only experienced network administrators change the spanning tree parameters. Poorly planned modification of the spanning tree parameters can negatively affect network performance.
  • Page 813: Modifying Interface Stp Parameters

    PROTOCOL SPANNING TREE mode max-age seconds The range is from 6 to 40. The default is 20 seconds. To view the current values for global parameters, use the show spanning-tree 0 command from EXEC privilege mode. Refer to the second example in Enabling Spanning Tree Protocol Globally.
  • Page 814: Prevent Network Disruptions With Bpdu Guard

    The following example shows a scenario in which an edgeport might unintentionally receive a BPDU. The port on the Dell Networking system is configured with Portfast. If the switch is connected to the hub, the BPDUs that the switch generates might trigger an undesirable topology change. If you enable BPDU Guard, when the edge port receives the BPDU, the BPDU is dropped, the port is blocked, and a console message is generated.
  • Page 815 – Disable spanning tree on the interface (the no spanning-tree command in INTERFACE mode). – Disabling global spanning tree (the no spanning-tree in CONFIGURATION mode). Figure 108. Enabling BPDU Guard Dell Networking OS Behavior: BPDU guard and BPDU filtering both block BPDUs, but are two separate features. BPDU guard: •...
  • Page 816: Selecting Stp Root

    Te 1/6 Root 128.263 128 20000 FWD 20000 P2P Te 1/7 ErrDis 128.264 128 20000 EDS 20000 P2P Dell(conf-if-te-1/7)#do show ip interface brief tengigabitEthernet 1/7 Interface IP-Address OK Method Status Protocol TenGigabitEthernet 1/7 unassigned YES Manual up Selecting STP Root The STP determines the root bridge, but you can assign one bridge a lower priority to increase the likelihood that it becomes the root bridge.
  • Page 817: Stp Root Guard

    Root Bridge hello time 2, max age 20, forward delay 15 Dell# STP Root Guard Use the STP root guard feature in a Layer 2 network to avoid bridging loops. In STP, the switch in the network with the lowest priority (as determined by STP or set with the bridge-priority command) is selected as the root bridge.
  • Page 818: Configuring Root Guard

    Configuring Root Guard Enable STP root guard on a per-port or per-port-channel basis. Dell Networking OS Behavior: The following conditions apply to a port enabled with STP root guard: • Root guard is supported on any STP-enabled port or port-channel interface except when used as a stacking port.
  • Page 819: Enabling Snmp Traps For Root Elections And Topology Changes

    • Configure all spanning tree types to be hitless. CONFIGURATION mode redundancy protocol xstp Example of Configuring all Spanning Tree Types to be Hitless Dell(conf)#redundancy protocol xstp Dell#show running-config redundancy redundancy protocol xstp Dell# Spanning Tree Protocol (STP)
  • Page 820: Stp Loop Guard

    STP Loop Guard The STP loop guard feature provides protection against Layer 2 forwarding loops (STP loops) caused by a hardware failure, such as a cable failure or an interface fault. When a cable or interface fails, a participating STP link may become unidirectional (STP requires links to be bidirectional) and an STP port does not receive BPDUs.
  • Page 821: Configuring Loop Guard

    Configuring Loop Guard Enable STP loop guard on a per-port or per-port channel basis. Dell Networking OS Behavior: The following conditions apply to a port enabled with loop guard: • Loop guard is supported on any STP-enabled port or port-channel interface.
  • Page 822: Displaying Stp Guard Configuration

    BPDU guard is enabled on a port that is shut down (Error Disabled state) after receiving a BPDU. • Verify the STP guard configured on port or port-channel interfaces. show spanning-tree 0 guard [interface interface] Example of Viewing STP Guard Configuration Dell#show spanning-tree 0 guard Interface Name Instance Sts Guard type...
  • Page 823: System Time And Date

    System time and date settings and the network time protocol (NTP) are supported on Dell Networking You can set system times and dates and maintained through the NTP. They are also set through the Dell Networking Operating System (OS) command line interfaces (CLIs) and hardware settings.
  • Page 824: Protocol Overview

    (secondary servers) in the hierarchy assigned as one greater than the preceding level. Dell Networking OS synchronizes with a time-serving host to get the correct time. You can set Dell Networking OS to poll specific NTP time-serving hosts for the current time. From those time-serving hosts, the system chooses one NTP host with which to synchronize and serve as a client to the NTP host.
  • Page 825: Configure The Network Time Protocol

    Enabling NTP NTP is disabled by default. To enable NTP, specify an NTP server to which the Dell Networking system synchronizes. To specify multiple servers, enter the command multiple times. You may specify an unlimited number of servers at the expense of CPU resources.
  • Page 826: Disabling Ntp On An Interface

    2w1d11h : NTP: Maximum Slew:-0.000470, Remainder = -0.496884 Disabling NTP on an Interface By default, NTP is enabled on all active interfaces. If you disable NTP on an interface, Dell Networking OS drops any NTP packets sent to that interface.
  • Page 827 Dell Networking OS version in which you have configured ntp authentication-key, the system cannot correctly decrypt the key and cannot authenticate the NTP packets. In this case, re-enter this command and save the running-config to the startup-config. To configure NTP authentication, use the following commands.
  • Page 828 To configure the switch as NTP Server use the ntp master<stratum> command. stratum number identifies the NTP Server's hierarchy. Examples of Configuring and Viewing an NTP Configuration The following example shows configuring an NTP server. R6_E300(conf)#1w6d23h : NTP: xmit packet to 192.168.1.1: leap 0, mode 3, version 3, stratum 2, ppoll 1024 rtdel 0219 (8.193970), rtdsp AF928 (10973.266602), refid C0A80101 (192.168.1.1)
  • Page 829 To view the NTP configuration, use the show running-config ntp command in EXEC privilege mode. The following example shows an encrypted authentication key (in bold). All keys are encrypted. Dell#show running ntp ntp authenticate ntp authentication-key 345 md5 5A60910F3D211F02 ntp server 11.1.1.1 version 3...
  • Page 830: Dell Networking Os Time And Date

    Dell Networking OS Time and Date You can set the time and date using the Dell Networking OS CLI. Configuration Task List The following is a configuration task list for configuring the time and date settings. • Setting the Time and Date for the Switch Software Clock •...
  • Page 831: Set Daylight Saving Time

    Dell# Set Daylight Saving Time Dell Networking OS supports setting the system to daylight saving time once or on a recurring basis every year. Setting Daylight Saving Time Once Set a date (and time zone) on which to convert the switch to daylight saving time on a one-time basis.
  • Page 832: Setting Recurring Daylight Saving Time

    00:00:00 pacific Sat Nov 7 2009" Setting Recurring Daylight Saving Time Set a date (and time zone) on which to convert the switch to daylight saving time on a specific day every year. If you have already set daylight saving for a one-time setting, you can set that date and time as the recurring setting with the clock summer-time time-zone recurring command.
  • Page 833 Examples of the clock summer-time recurring Command The following example shows the clock summer-time recurring command. Dell(conf)#clock summer-time pacific recurring Mar 14 2009 00:00 Nov 7 2009 00:00 ? Dell(conf)#02:02:13: %RPM0-P:CP %CLOCK-6-TIME CHANGE: Summertime configuration changed from "none" to "Summer time starts 00:00:00 Pacific Sat Mar 14 2009;Summer time ends 00:00:00 pacific Sat Nov 7 2009"...
  • Page 834: Tunneling

    IPv6IP mode, the logical address must be an IPv6 address. The following sample configuration shows a tunnel configured in IPv6 mode (carries IPv6 and IPv4 traffic). Dell(conf)#interface tunnel 1 Dell(conf-if-tu-1)#tunnel source 30.1.1.1 Dell(conf-if-tu-1)#tunnel destination 50.1.1.1 Dell(conf-if-tu-1)#tunnel mode ipip Dell(conf-if-tu-1)#ip address 1.1.1.1/24...
  • Page 835: Configuring Tunnel Keepalive Settings

    Dell(conf-if-tu-1)#ipv6 address 1abd::1/64 Dell(conf-if-tu-1)#ip address 1.1.1.1/24 Dell(conf-if-tu-1)#tunnel source 40.1.1.1 Dell(conf-if-tu-1)#tunnel destination 40.1.1.2 Dell(conf-if-tu-1)#tunnel mode ipip Dell(conf-if-tu-1)#no shutdown Dell(conf-if-tu-1)#tunnel keepalive 1.1.1.2 attempts 4 interval 6 Dell(conf-if-tu-1)#show config interface Tunnel 1 ip address 1.1.1.1/24 ipv6 address 1abd::1/64 tunnel destination 40.1.1.2 tunnel source 40.1.1.1 tunnel keepalive 1.1.1.2 attempts 4 interval 6...
  • Page 836: Configuring A Tunnel Interface

    The following sample configuration shows how to use the tunnel interface configuration commands. Dell(conf-if-te-1/1)#show config interface TenGigabitEthernet 1/1 ip address 20.1.1.1/24 ipv6 address 20:1::1/64 no shutdown Dell(conf)#interface tunnel 1 Dell(conf-if-tu-1)#ip unnumbered tengigabitethernet 1/1 Dell(conf-if-tu-1)#ipv6 unnumbered tengigabitethernet 1/1 Dell(conf-if-tu-1)#tunnel source 40.1.1.1 Dell(conf-if-tu-1)#tunnel mode ipip decapsulate-any Dell(conf-if-tu-1)#no shutdown Dell(conf-if-tu-1)#show config interface Tunnel 1...
  • Page 837: Configuring Tunnel Source Anylocal Decapsulation

    The following sample configuration shows how to use the tunnel source anylocal command. Dell(conf)#interface tunnel 1 Dell(conf-if-tu-1)#ipv6 address 1abd::1/64 Dell(conf-if-tu-1)#ip address 1.1.1.1/24 Dell(conf-if-tu-1)#tunnel source anylocal Dell(conf-if-tu-1)#tunnel mode ipip decapsulate-any Dell(conf-if-tu-1)#tunnel allow-remote 40.1.1.2 Dell(conf-if-tu-1)#no shutdown Dell(conf-if-tu-1)#show config interface Tunnel 1 ip address 1.1.1.1/24...
  • Page 838: Multipoint Receive-Only Type And Ip Unnumbered Interfaces For Tunnels

    Multipoint Receive-Only Type and IP Unnumbered Interfaces for Tunnels This is a new type of tunnel that is expected to only decapsulate packets from remote end points but never forwards packets on the tunnel. Additional level of protection on the receive-only type IP tunnels is available by allowing only a given prefix/range of remote peers.
  • Page 839: Upgrade Procedures

    Upgrade Procedures To find the upgrade procedures, go to the Dell Networking OS Release Notes for your system type to see all the requirements needed to upgrade to the desired Dell Networking OS version. To upgrade your system type, follow the procedures in the Dell Networking OS Release Notes.
  • Page 840: Virtual Lans (Vlans)

    Interfaces chapter. • VLAN Stacking in the Service Provider Bridging chapter. For a complete listing of all commands related to Dell Networking OS VLANs, refer to these Dell Networking OS Command Reference Guide chapters: • Interfaces • 802.1X • GARP VLAN Registration Protocol (GVRP) •...
  • Page 841: Port-Based Vlans

    T Te 1/1 Port-Based VLANs Port-based VLANs are a broadcast domain defined by different ports or interfaces. In Dell Networking OS, a port-based VLAN can contain interfaces from different line cards within the chassis. Dell Networking OS supports 4094 port-based VLANs.
  • Page 842: Vlans And Port Tagging

    Layer 2 mode, the interface is automatically placed in the Default VLAN. Dell Networking OS supports IEEE 802.1Q tagging at the interface level to filter traffic. When you enable tagging, a tag header is added to the frame after the destination and source MAC addresses. That information is preserved as the frame moves through the network.
  • Page 843: Assigning Interfaces To A Vlan

    VLAN 2. The Q column in the show vlan command example notes whether the interface is tagged (T) or untagged (U). For more information about this command, refer to the Layer 2 chapter of the Dell Networking OS Command Reference Guide.
  • Page 844 Inactive Active Po1(So 0/0-1) Te 1/1 Active Po1(So 0/0-1) Te 1/2 Dell#config Dell(conf)#interface vlan 4 Dell(conf-if-vlan)#tagged po 1 Dell(conf-if-vlan)#show conf interface Vlan 4 no ip address tagged Port-channel 1 Dell(conf-if-vlan)#end Dell#show vlan Codes: * - Default VLAN, G - GVRP VLANs...
  • Page 845: Moving Untagged Interfaces

    Active Po1(So 0/0-1) Te 1/3 Active Po1(So 0/0-1) Te 1/1 Inactive Dell#conf Dell(conf)#interface vlan 4 Dell(conf-if-vlan)#untagged tengigabitethernet 1/2 Dell(conf-if-vlan)#show config interface Vlan 4 no ip address untagged TenGigabitEthernet 1/2 Dell(conf-if-vlan)#end Dell#show vlan Codes: * - Default VLAN, G - GVRP VLANs...
  • Page 846: Assigning An Ip Address To A Vlan

    NOTE: You cannot assign an IP address to the Default VLAN (VLAN 1). To assign another VLAN ID to the Default VLAN, use the default vlan-id vlan-id command. In Dell Networking OS, you can place VLANs and other logical interfaces in Layer 3 mode to receive and send routed traffic. For more information, refer to Bulk Configuration.
  • Page 847: Enabling Null Vlan As The Default Vlan

    This presents a vulnerability because both interfaces are initially placed in the native VLAN, VLAN 1, and for that period customers are able to access each other's networks. Dell Networking OS has a Null VLAN to eliminate this vulnerability. When you enable the Null VLAN, all ports are placed into it by default, so even if you activate the physical ports of multiple customers, no traffic is allowed to traverse the links until each port is place in another VLAN.
  • Page 848: Virtual Link Trunking (Vlt)

    • Assures high availability. CAUTION: Dell Networking does not recommend enabling Stacking and VLT simultaneously. If you enable both features at the same time, unexpected behavior occurs. As shown in the following example, VLT presents a single logical Layer 2 domain from the perspective of attached devices that have a virtual link trunk terminating on separate chassis in the VLT domain.
  • Page 849: Vlt On Core Switches

    The aggregation layer is mostly in the L2/L3 switching/routing layer. For better resiliency in the aggregation, Dell Networking recommends running the internal gateway protocol (IGP) on the VLTi VLAN to synchronize the L3 routing table across the two nodes on a VLT system.
  • Page 850: Vlt Terminology

    Figure 114. Enhanced VLT VLT Terminology The following are key VLT terms. • Virtual link trunk (VLT) — The combined port channel between an attached device and the VLT peer switches. • VLT backup link — The backup link monitors the vitality of VLT peer switches. The backup link sends configurable, periodic keep alive messages between the VLT peer switches.
  • Page 851: Configure Virtual Link Trunking

    Configure Rapid Spanning Tree. • Dell Networking strongly recommends that the VLTi (VLT interconnect) be a static LAG and that you disable LACP on the VLTi. • Ensure that the spanning tree root bridge is at the Aggregation layer. If you enable RSTP on the VLT...
  • Page 852: Configuration Notes

    VLT assigns the primary chassis role according to the lowest MAC address. You can configure the primary role. – In a VLT domain, the peer switches must run the same Dell Networking OS software version. – Separately configure each VLT peer switch with the same VLT domain ID and the VLT version. If the system detects mismatches between VLT peer switches in the VLT domain ID or VLT version, the VLT Interconnect (VLTi) does not activate.
  • Page 853 – Port-channel link aggregation (LAG) across the ports in the VLT interconnect is required; individual ports are not supported. Dell Networking strongly recommends configuring a static LAG for VLTi. – The VLT interconnect synchronizes L2 and L3 control-plane information across the two chassis.
  • Page 854 – VLT allows multiple active parallel paths from access switches to VLT chassis. – VLT supports port-channel links with LACP between access switches and VLT peer switches. Dell Networking recommends using static port channels on VLTi.
  • Page 855 – Enable Layer 3 VLAN connectivity VLT peers by configuring a VLAN network interface for the same VLAN on both switches. – Dell Networking does not recommend enabling peer-routing if the CAM is full. To enable peer- routing, a minimum of two local DA spaces for wild card functionality are required.
  • Page 856: Primary And Secondary Vlt Peers

    Primary and Secondary VLT Peers To prevent issues when connectivity between peers is lost, you can designate Primary and Secondary roles for VLT peers . You can elect or configure the Primary Peer. By default, the peer with the lowest MAC address is selected as the Primary Peer.
  • Page 857: Vlt And Igmp Snooping

    When the bandwidth usage drops below the 80% threshold, the system generates another syslog message (shown in the following message) and an SNMP trap. %STKUNIT0-M:CP %VLTMGR-6-VLT-LAG-ICL: Overall Bandwidth utilization of VLT-ICL- LAG (port-channel 25) reaches below threshold. Bandwidth usage (74 )VLT show remote port channel status VLT and IGMP Snooping When configuring IGMP Snooping with VLT, ensure the configurations on both sides of the VLT trunk are...
  • Page 858 Figure 115. PIM-Sparse Mode Support on VLT On each VLAN where the VLT peer nodes act as the first hop or last hop routers, one of the VLT peer nodes is elected as the PIM designated router. If you configured IGMP snooping along with PIM on the VLT VLANs, you must configure VLTi as the static multicast router port on both VLT peer switches.
  • Page 859: Vlt Routing

    To route traffic to and from the multicast source and receiver, enable PIM on the L3 side connected to the PIM router using the ip pim sparse-mode command. Each VLT peer runs its own PIM protocol independently of other VLT peers. To ensure the PIM protocol states or multicast routing information base (MRIB) on the VLT peers are synced, if the incoming interface (IIF) and outgoing interface (OIF) are Spanned, the multicast route table is synced between the VLT peers.
  • Page 860 If you enable VLT unicast routing, the following actions occur: • L3 routing is enabled on any new IP address / IPv6 address configured for a VLAN interface that is up. • L3 routing is enabled on any VLAN with an admin state of up. NOTE: If the CAM is full, do not enable peer-routing.
  • Page 861: Non-Vlt Arp Sync

    • You can only use one spanned VLAN from a PIM-enabled VLT node to an external neighboring PIM router. • If you connect multiple spanned VLANs to a PIM neighbor, or if both spanned and non-spanned VLANs can access the PIM neighbor, ECMP can cause the PIM protocol running on each VLT peer node to choose a different VLAN or IP route to reach the PIM neighbor.
  • Page 862: Preventing Forwarding Loops In A Vlt Domain

    Run RSTP on both VLT peer switches. The primary VLT peer controls the RSTP states, such as forwarding and blocking, on both the primary and secondary peers. Dell Networking recommends configuring the primary VLT peer as the RSTP primary root device and configuring the secondary VLT peer as the RSTP secondary root device.
  • Page 863: Configuring Vlt

    Dell_VLTpeer2(conf-rstp)#bridge-priority 0 Configuring VLT To configure VLT, use the following procedure. Prerequisites: Before you begin, make sure that both VLT peer switches are running the same Dell Networking OS version and are configured for RSTP as described in RSTP Configuration. For VRRP...
  • Page 864 interface: specify one of the following interface types: • For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information. • For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. Ensure that the port channel is active. INTERFACE PORT-CHANNEL mode no shutdown Repeat Steps 1 to 4 on the VLT peer switch to configure the VLT interconnect.
  • Page 865 Repeat Steps 1 to 4 on the VLT peer switch to configure the IP address of this switch as the endpoint of the VLT backup link and to configure the same port channel for the VLT interconnect. Configuring a VLT Backup Link To configure a VLT backup link, use the following command.
  • Page 866 The priority values are from 1 to 65535. The default is 32768. (Optional) When you create a VLT domain on a switch, Dell Networking OS automatically creates a VLT-system MAC address used for internal system operations. VLT DOMAIN CONFIGURATION mode...
  • Page 867 CONFIGURATION mode interface port-channel id-number Remove an IP address from the interface. INTERFACE PORT-CHANNEL mode no ip address Place the interface in Layer 2 mode. INTERFACE PORT-CHANNEL mode switchport Add one or more port interfaces to the port channel. INTERFACE PORT-CHANNEL mode channel-member interface interface: specify one of the following interface types: •...
  • Page 868 VLT DOMAIN CONFIGURATION mode peer-link port-channel id-number The range is from 1 to 128. Enter the VLAN ID number of the VLAN where the VLT forwards packets received on the VLTi from an adjacent peer that is down. VLT DOMAIN CONFIGURATION mode peer-down-vlan vlan interface number The range is from 1 to 4094.
  • Page 869 Use this command to minimize the time required for the VLT system to synchronize the default MAC address of the VLT domain on both peer switches when one peer switch reboots. When you create a VLT domain on a switch, Dell Networking OS automatically assigns a unique unit ID (0 or 1) to each peer switch.
  • Page 870 CONFIGURATION mode interface port-channel port-channel id NOTE: To benefit from the protocol negotiations, Dell Networking recommends configuring VLTs used as facing hosts/switches with LACP. Ensure both peers use the same port channel ID. Configure the peer-link port-channel in the VLT domains of each peer unit.
  • Page 871 In the following sample VLT configuration steps, VLT peer 1 is , VLT peer 2 is , and the ToR is S60-1. NOTE: If you use a third-party ToR unit, Dell Networking recommends using static LAGs with VLT peers to avoid potential problems if you reboot the VLT peers.
  • Page 872 Configure the peer-link port-channel in the VLT domains of each peer unit. s4810-2(conf)#interface port-channel 1 s4810-2(conf-if-po-1)#channel-member TenGigabitEthernet 1/4-7 s4810-4(conf)#interface port-channel 1 s4810-4(conf-if-po-1)#channel-member TenGigabitEthernet 1/4-7 Configure the backup link between the VLT peer units. Configure the peer 2 management ip/ interface ip for which connectivity is present in VLT peer 1. Configure the peer 1 management ip/ interface ip for which connectivity is present in VLT peer 2.
  • Page 873 no shutdown s4810-2#show interfaces port-channel 2 brief Codes: L - LACP Port-channel Mode Status Uptime Ports L2L3 03:33:14 Te 1/4 (Up) In the ToR unit, configure LACP on the physical ports. s60-1#show running-config interface tengigabitethernet 1/8 interface TenGigabitEthernet 1/8 no ip address port-channel-protocol LACP port-channel 100 mode active no shutdown...
  • Page 874: Pvst+ Configuration

    PVST+ instance running in Secondary peer will not control the VLT-LAGs. Dell Networking recommends configuring the primary VLT peer as the primary root device for all the configured PVST+ Instances and configuring the secondary VLT peer as the secondary root device for all the configured PVST+ Instances.
  • Page 875: Evlt Configuration Example

    Desg 128.233 2000 Dell# eVLT Configuration Example The following example demonstrates the steps to configure enhanced VLT (eVLT) in a network. In this example, you are configuring two domains. Domain 1 consists of Peer 1 and Peer 2; Domain 2 consists of Peer 3 and Peer 4, as shown in the following example.
  • Page 876: Evlt Configuration Step Examples

    Figure 116. eVLT Configuration Example eVLT Configuration Step Examples In Domain 1, configure the VLT domain and VLTi on Peer 1. Domain_1_Peer1#configure Domain_1_Peer1(conf)#interface port-channel 1 Domain_1_Peer1(conf-if-po-1)# channel-member TenGigabitEthernet 1/8-9 Domain_1_Peer1(conf)#vlt domain 1000 Domain_1_Peer1(conf-vlt-domain)# peer-link port-channel 1 Domain_1_Peer1(conf-vlt-domain)# back-up destination 10.16.130.11 Domain_1_Peer1(conf-vlt-domain)# system-mac mac-address 00:0a:00:0a:00:0a Domain_1_Peer1(conf-vlt-domain)# unit-id 0 Configure eVLT on Peer 1.
  • Page 877 Domain_1_Peer2(conf-vlt-domain)# back-up destination 10.16.130.12 Domain_1_Peer2(conf-vlt-domain)# system-mac mac-address 00:0a:00:0a:00:0a Domain_1_Peer2(conf-vlt-domain)# unit-id 1 Configure eVLT on Peer 2. Domain_1_Peer2(conf)#interface port-channel 100 Domain_1_Peer2(conf-if-po-100)# switchport Domain_1_Peer2(conf-if-po-100)# vlt-peer-lag port-channel 100 Domain_1_Peer2(conf-if-po-100)# no shutdown Add links to the eVLT port-channel on Peer 2. Domain_1_Peer2(conf)#interface range tengigabitethernet 1/28 - 29 Domain_1_Peer2(conf-if-range-te-1/28-29)# port-channel-protocol LACP Domain_1_Peer2(conf-if-range-te-1/28-29)# port-channel 100 mode active Domain_1_Peer2(conf-if-range-te-1/28-29)# no shutdown...
  • Page 878: Pim-Sparse Mode Configuration Example

    Configure eVLT on Peer 4. Domain_2_Peer4(conf)#interface port-channel 100 Domain_2_Peer4(conf-if-po-100)# switchport Domain_2_Peer4(conf-if-po-100)# vlt-peer-lag port-channel 100 Domain_2_Peer4(conf-if-po-100)# no shutdown Add links to the eVLT port-channel on Peer 4. Domain_2_Peer4(conf)#interface range tengigabitethernet 1/31 - 32 Domain_2_Peer4(conf-if-range-te-1/31-32)# port-channel-protocol LACP Domain_2_Peer4(conf-if-range-te-1/31-32)# port-channel 100 mode active Domain_2_Peer4(conf-if-range-te-1/31-32)# no shutdown PIM-Sparse Mode Configuration Example The following sample configuration shows how to configure the PIM Sparse mode designated router...
  • Page 879: Verifying A Vlt Configuration

    Verifying a VLT Configuration To monitor the operation or verify the configuration of a VLT domain, use any of the following show commands on the primary and secondary VLT switches. • Display information on backup link operation. EXEC mode show vlt backup-link •...
  • Page 880 Examples of the show vlt and show spanning-tree rstp Commands The following example shows the show vlt backup-link command. Dell_VLTpeer1# show vlt backup-link VLT Backup Link ----------------- Destination: 10.11.200.18 Peer HeartBeat status: HeartBeat Timer Interval: HeartBeat Timeout: UDP Port: 34998 HeartBeat Messages Sent: 1026 HeartBeat Messages Received: 1025...
  • Page 881 The following example shows the show vlt detail command. Dell_VLTpeer1# show vlt detail Local LAG Id Peer LAG Id Local Status Peer Status Active VLANs ------------ ----------- ------------ ----------- ------------- 10, 20, 30 20, 30 Dell_VLTpeer2# show vlt detail Local LAG Id Peer LAG Id Local Status Peer Status Active VLANs ------------ ----------- ------------ ----------- ------------- 20, 30 10, 20, 30...
  • Page 882: Additional Vlt Sample Configurations

    Dell_VLTpeer2# show vlt statistics VLT Statistics ---------------- HeartBeat Messages Sent: HeartBeat Messages Received: 978 ICL Hello's Sent: ICL Hello's Received: The following example shows the show spanning-tree rstp command. The bold section displays the RSTP state of port channels in the VLT domain. Port channel 100 is used in the VLT interconnect trunk (VLTi) to connect to VLT peer2.
  • Page 883 Configuring Virtual Link Trunking (VLT Peer 1) Enable VLT and create a VLT domain with a backup-link and interconnect trunk (VLTi). Dell_VLTpeer1(conf)#vlt domain 999 Dell_VLTpeer1(conf-vlt-domain)#peer-link port-channel 100 Dell_VLTpeer1(conf-vlt-domain)#back-up destination 10.11.206.35 Dell_VLTpeer1(conf-vlt-domain)#exit Configure the backup link. Dell_VLTpeer1(conf)#interface ManagementEthernet 0/0 Dell_VLTpeer1(conf-if-ma-0/0)#ip address 10.11.206.23/ Dell_VLTpeer1(conf-if-ma-0/0)#no shutdown Dell_VLTpeer1(conf-if-ma-0/0)#exit Configure the VLT interconnect (VLTi).
  • Page 884: Verifying A Port-Channel Connection To A Vlt Domain

    Configure the backup link. Dell_VLTpeer2(conf)#interface ManagementEthernet 0/0 Dell_VLTpeer2(conf-if-ma-0/0)#ip address 10.11.206.35/ Dell_VLTpeer2(conf-if-ma-0/0)#no shutdown Dell_VLTpeer2(conf-if-ma-0/0)#exit Configure the VLT interconnect (VLTi). Dell_VLTpeer2(conf)#interface port-channel 100 Dell_VLTpeer2(conf-if-po-100)#no ip address Dell_VLTpeer2(conf-if-po-100)#channel-member fortyGigE 1/56,60 Dell_VLTpeer2(conf-if-po-100)#no shutdown Dell_VLTpeer2(conf-if-po-100)#exit Configure the port channel to an attached device. Dell_VLTpeer2(conf)#interface port-channel 110 Dell_VLTpeer2(conf-if-po-110)#no ip address Dell_VLTpeer2(conf-if-po-110)#switchport Dell_VLTpeer2(conf-if-po-110)#channel-member fortyGigE 1/48...
  • Page 885: Troubleshooting Vlt

    Troubleshooting VLT To help troubleshoot different VLT issues that may occur, use the following information. NOTE: For information on VLT Failure mode timing and its impact, contact your Dell Networking representative. Table 59. Troubleshooting VLT Description Behavior at Peer Up...
  • Page 886: Reconfiguring Stacked Switches As Vlt

    Peer 1 is unit ID “0”, Peer 2 unit ID must be “1’. Version ID mismatch A syslog error message A syslog error message Verify the Dell and an SNMP trap are and an SNMP trap are Networking OS software generated. generated.
  • Page 887: Specifying Vlt Nodes In A Pvlan

    Specifying VLT Nodes in a PVLAN You can configure VLT peer nodes in a private VLAN (PVLAN). VLT enables redundancy without the implementation of Spanning Tree Protocol (STP), and provides a loop-free network with optimal bandwidth utilization. Because the VLT LAG interfaces are terminated on two different nodes, PVLAN configuration of VLT VLANs and VLT LAGs are symmetrical and identical on both the VLT peers.
  • Page 888: Association Of Vlti As A Member Of A Pvlan

    not validated if you associate an ICL to a PVLAN. Similarly, if you dissociate an ICL from a PVLAN, although the PVLAN parity exists, ICL is removed from that PVLAN. Association of VLTi as a Member of a PVLAN If a VLAN is configured as a non-VLT VLAN on both the peers, the VLTi link is made a member of that VLAN if the VLTi link is configured as a PVLAN or normal VLAN on both the peers.
  • Page 889: Pvlan Operations When A Vlt Peer Is Restarted

    PVLAN Operations When a VLT Peer is Restarted When the VLT peer node is rebooted, the VLAN membership of the VLTi link is preserved and when the peer node comes back online, a verification is performed with the newly received PVLAN configuration from the peer.
  • Page 890 VLT LAG Mode PVLAN Mode of VLT VLAN ICL VLAN Membership Synchronization Peer1 Peer2 Peer1 Peer2 Promiscuo Trunk Primary Primary Trunk Access Primary Secondary Promiscuo Promiscuo Primary Primary Promiscuo Access Primary Secondary Promiscuo Promiscuo Primary Primary - Secondary - Secondary (Community) (Isolated) Access...
  • Page 891: Configuring A Vlt Vlan Or Lag In A Pvlan

    VLT LAG Mode PVLAN Mode of VLT VLAN ICL VLAN Membership Synchronization Peer1 Peer2 Peer1 Peer2 Access Access Secondary Secondary (Community) (Community) - Primary VLAN Y - Primary VLAN X Promiscuo Access Primary Secondary Trunk Access Primary/Normal Secondary Configuring a VLT VLAN or LAG in a PVLAN You can configure the VLT peers or nodes in a private VLAN (PVLAN).
  • Page 892: Associating The Vlt Lag Or Vlt Vlan In A Pvlan

    INTERFACE PORT-CHANNEL mode no shutdown To configure the VLT interconnect, repeat Steps 1–4 on the VLT peer switch. Enter VLT-domain configuration mode for a specified VLT domain. CONFIGURATION mode vlt domain domain-id The range of domain IDs is from 1 to 1000. Enter the port-channel number that acts as the interconnect trunk.
  • Page 893: Proxy Arp Capability On Vlt Peer Nodes

    Enable the VLAN. INTERFACE VLAN mode no shutdown To obtain maximum VLT resiliency, configure the PVLAN IDs and mappings to be identical on both the VLT peer nodes. Set the PVLAN mode of the selected VLAN to primary. INTERFACE VLAN mode private-vlan mode primary Map secondary VLANs to the selected primary VLAN.
  • Page 894: Working Of Proxy Arp For Vlt Peer Nodes

    supported only for the IP address belongs to the received interface IP network. Proxy ARP is not supported if the ARP requested IP address is different from the received interface IP subnet. For example, if VLAN 100 and 200 are configured on the VLT peers, and if the VLAN 100 IP address is configured as 10.1.1.0/24 and the VLAN 200 IP address is configured as 20.1.1.0/24, the proxy ARP is not performed if the VLT node receives an ARP request for 20.1.1.0/24 on VLAN 100.
  • Page 895: Vlt Nodes As Rendezvous Points For Multicast Resiliency

    VLT Nodes as Rendezvous Points for Multicast Resiliency You can configure virtual link trunking (VLT) peer nodes as rendezvous points (RPs) in a Protocol Independent Multicast (PIM) domain. PIM uses a VLT node as the RP to distribute multicast traffic to a multicast group. Messages to join the multicast group (Join messages) and data are sent towards the RP, so that receivers can discover who the senders are and begin receiving traffic destined for the multicast group.
  • Page 896 Dell# Configure VLT LAG as VLAN-Stack Access or Trunk Port Dell(conf)#interface port-channel 10 Dell(conf-if-po-10)#switchport Dell(conf-if-po-10)#vlt-peer-lag port-channel 10 Dell(conf-if-po-10)#vlan-stack access Dell(conf-if-po-10)#no shutdown Dell#show running-config interface port-channel 10 interface Port-channel 10 no ip address switchport vlan-stack access vlt-peer-lag port-channel 10 no shutdown...
  • Page 897 Dell(conf-if-po-20)#switchport Dell(conf-if-po-20)#vlt-peer-lag port-channel 20 Dell(conf-if-po-20)#vlan-stack trunk Dell(conf-if-po-20)#no shutdown Dell#show running-config interface port-channel 20 interface Port-channel 20 no ip address switchport vlan-stack trunk vlt-peer-lag port-channel 20 no shutdown Dell# Configure VLAN as VLAN-Stack VLAN and add the VLT LAG as Members to the VLAN...
  • Page 898 Dell# Configure VLT LAG as VLAN-Stack Access or Trunk Port Dell(conf)#interface port-channel 10 Dell(conf-if-po-10)#switchport Dell(conf-if-po-10)#vlt-peer-lag port-channel 10 Dell(conf-if-po-10)#vlan-stack access Dell(conf-if-po-10)#no shutdown Dell#show running-config interface port-channel 10 interface Port-channel 10 no ip address switchport vlan-stack access vlt-peer-lag port-channel 10 no shutdown...
  • Page 899 G - GVRP tagged, M - Vlan-stack i - Internal untagged, I - Internal tagged, v - VLT untagged, V - VLT tagged Status Description Q Ports Active M Po10(Te 1/8) M Po20(Te 1/20) V Po1(Te 1/30-32) Dell# Virtual Link Trunking (VLT)
  • Page 900: Vlt Proxy Gateway

    L3 packets that are destined to a L3 end point in another VLT domain. Enable the VLT proxy gateway using the link layer discover protocol (LLDP) method or the static configuration. For more information, refer to Dell Networking OS Command Line Reference Guide. Proxy Gateway in VLT Domains Using a proxy gateway, the VLT peers in a domain can route the L3 packets destined for VLT peers in another domain as long as they have L3 reachability for the IP destinations.
  • Page 901: Guidelines For Enabling The Vlt Proxy Gateway

    Guidelines for Enabling the VLT Proxy Gateway Keep the following points in mind when you enable this functionality: The proxy gateway is supported only for VLT; for example, across VLT domain. You must enable the VLT peer-routing command for the VLT proxy gateway to function. The current design does not handle asymmetric virtual local area network (VLAN) configuration scenarios such as the same VLAN configured with L2 mode on one VLT domain and L3 mode on another VLT domain.
  • Page 902: Enabling The Vlt Proxy Gateway

    You cannot change the LLDP port channel interface to a legacy LAG when you enable the proxy gateway. 10. Dell recommends using thevlt-peer-mac transmit command only for square VLTs without diagonal links. 11. VRRP and IPv6 routing is not supported.
  • Page 903: Lldp Organizational Tlv For Proxy Gateway

    TLV. • This TLV is recognizable only by Dell Networking devices with this feature support. Other device ignore this field and are able to process other standard TLVs. The LLDP organizational TLV passes local destination MAC address information to peer VLT domain devices so they can act as the proxy gateway.
  • Page 904: Sample Configurations For Static Vlt Proxy Gateway

    Configure peer-domain-link port-channel <vlt portchannel ID> in VLT Domain Proxy Gateway LLDP mode. The VLT port channel is the one that connects the remote VLT domain. Sample Configurations for Static VLT Proxy Gateway Apply the following configurations in the Core L3 Routers C and D in local VLT domain and C1 and D1 in the remote VLT domain: Configure proxy-gateway static in VLT Domain CONFIG mode Configure remote-mac-address <mac-address>...
  • Page 905: Configuring An Lldp Vlt Proxy Gateway

    The configuration has to be done in both the VLT domains [C and D in VLT domain 1 and C1 and D1 in VLT domain 2]. Sample Configuration LLDP Method Dell(conf-vlt-domain)#proxy-gateway ll Dell(conf-vlt-domain-pxy-gw-lldp)#peer-domain-link port-channel 1 exclude- vlan 10 Static Configuration Method Dell(conf-vlt-domain)#proxy-gateway static Dell(conf-vlt-domain-pxy-gw-static)#remote-mac-address <xx:xx:xx:xx:xx:xx>...
  • Page 906 VLT DOMAIN PROXY GW LLDP mode Dell(conf-vlt-domain-proxy-gw-lldp)#peer-domain-link port-channel interface exclude-vlan vlan-range Display the VLT proxy gateway configuration. EXEC mode Dell#show vlt-proxy-gateway VLT Proxy Gateway...
  • Page 907: Virtual Router Redundancy Protocol (Vrrp)

    Virtual Router Redundancy Protocol (VRRP) Virtual router redundancy protocol (VRRP) is supported on Dell Networking OS. VRRP Overview VRRP is designed to eliminate a single point of failure in a statically routed network. VRRP specifies a MASTER router that owns the next hop IP and MAC address for end stations on a local area network (LAN).
  • Page 908: Vrrp Benefits

    Figure 117. Basic VRRP Configuration VRRP Benefits With VRRP configured on a network, end-station connectivity to the network is not subject to a single point-of-failure. End-station connections to the network are redundant and are not dependent on internal gateway protocol (IGP) protocols to converge or update routing tables. VRRP Implementation Within a single VRRP group, up to 12 virtual IP addresses are supported.
  • Page 909: Vrrp Configuration

    Track an Interface or Object • Setting VRRP Initialization Delay For a complete listing of all commands related to VRRP, refer to Dell Networking OS Command Line Reference Guide. Creating a Virtual Router To enable VRRP, create a virtual router. In Dell Networking Operating System (OS), the virtual router identifier (VRID) identifies a VRRP group.
  • Page 910 Delete a VRRP group. INTERFACE mode no vrrp-group vrid Examples of Configuring and Verifying VRRP The following examples how to configure VRRP. Dell(conf)#interface tengigabitethernet 1/1 Dell(conf-if-te-1/1)#vrrp-group 111 Dell(conf-if-te-1/1-vrid-111)# The following examples how to verify the VRRP configuration. Dell(conf-if-te-1/1)#show conf interface TenGigabitEthernet 1/1 ip address 10.10.10.1/24...
  • Page 911 Though a single VRRP group can contain virtual IP addresses belonging to multiple IP subnets configured on the interface, Dell Networking recommends configuring virtual IP addresses belonging to the same IP subnet for any one VRRP group.
  • Page 912 The range is up to 12 addresses. Examples of the Configuring and Verifying a Virtual IP Address The following example shows how to configure a virtual IP address. Dell(conf-if-te-1/1-vrid-111)#virtual-address 10.10.10.1 Dell(conf-if-te-1/1-vrid-111)#virtual-address 10.10.10.2 Dell(conf-if-te-1/1-vrid-111)#virtual-address 10.10.10.3 The following example shows how to verify a virtual IP address configuration.
  • Page 913 INTERFACE -VRID mode priority priority The range is from 1 to 255. The default is 100. Examples of the priority Command Dell(conf-if-te-1/2)#vrrp-group 111 Dell(conf-if-te-1/2-vrid-111)#priority 125 To verify the VRRP group priority, use the show vrrp command. Dellshow vrrp ------------------ TenGigabitEthernet 1/1, VRID: 111, Net: 10.10.10.1 State: Master, Priority: 255, Master: 10.10.10.1 (local)
  • Page 914 Configuring VRRP Authentication Simple authentication of VRRP packets ensures that only trusted routers participate in VRRP processes. When you enable authentication, Dell Networking OS includes the password in its VRRP transmission. The receiving router uses that password to verify the transmission.\ NOTE: You must configure all virtual routers in the VRRP group the same: you must enable authentication with the same password or authentication is disabled.
  • Page 915 If the VRRP group misses three consecutive advertisements, the election process begins and the BACKUP virtual router with the highest priority transitions to MASTER. NOTE: To avoid throttling VRRP advertisement packets, Dell Networking OS recommends increasing the VRRP advertisement interval to a value higher than the default value of one second. If you do change the time interval between VRRP advertisements on one router, change it on all participating routers.
  • Page 916 Track an Interface or Object You can set Dell Networking OS to monitor the state of any interface according to the virtual group. Each VRRP group can track up to 12 interfaces and up to 20 additional objects, which may affect the priority of the VRRP group.
  • Page 917 Examples of Configuring and Viewing the track Command The following example shows how to configure tracking using the track command. Dell(conf-if-te-1/1)#vrrp-group 111 Dell(conf-if-te-1/1-vrid-111)#track Tengigabitethernet 1/2 The following example shows how to verify tracking using the show conf command. Dell(conf-if-te-1/1-vrid-111)#show conf...
  • Page 918 2 - Up IPv6 route, 2040::/64, priority-cost 20, 00:02:11 3 - Up IPv6 route, 2050::/64, priority-cost 30, 00:02:11 The following example shows verifying the VRRP configuration on an interface. Dell#show running-config interface tengigabitethernet 1/8 interface TenGigabitEthernet 1/8 no ip address...
  • Page 919: Setting Vrrp Initialization Delay

    VRRP initializes with no errors or conflicts. You can configure the delay for up to 15 minutes, after which VRRP enables normally. NOTE: When you reload a node that contains VRRP configuration and is enabled for VLT, Dell Networking recommends that you configure the reload timer by using the vrrp delay reload command to ensure that VRRP is functional.
  • Page 920 can copy and paste from the example to your CLI. To support your own IP addresses, interfaces, names, and so on, be sure that you make the necessary changes. The VRRP topology was created using the CLI configuration shown in the following example. Figure 118.
  • Page 921 interface TenGigabitEthernet 2/31 ip address 10.1.1.1/24 vrrp-group 99 priority 200 virtual-address 10.1.1.3 no shutdown R2(conf-if-te-2/31)#end R2#show vrrp ------------------ TenGigabitEthernet 2/31, VRID: 99, Net: 10.1.1.1 State: Master, Priority: 200, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 817, Gratuitous ARP sent: 1 Virtual MAC address: 00:00:5e:00:01:63...
  • Page 922 Figure 119. VRRP for an IPv6 Configuration NOTE: In a VRRP or VRRPv3 group, if two routers come up with the same priority and another router already has MASTER status, the router with master status continues to be MASTER even if one of two routers has a higher IP or IPv6 address.
  • Page 923 Although R2 and R3 have the same default, priority (100), R2 is elected master in the VRRPv3 group because the TenGigabitethernet 1/1 interface has a higher IPv6 address than the TenGigabitethernet 1/2 interface on R3. Router 2 R2(conf)#interface tengigabitethernet 1/1 R2(conf-if-te-1/1)#no ip address R2(conf-if-te-1/1)#ipv6 address 1::1/64 R2(conf-if-te-1/1)#vrrp-group 10...
  • Page 924: Vrrp In A Vrf Configuration

    Virtual MAC address: 00:00:5e:00:02:0a VRRP in a VRF Configuration The following example shows how to enable VRRP operation in a VRF virtualized network for the following scenarios. • Multiple VRFs on physical interfaces running VRRP. • Multiple VRFs on VLAN interfaces running VRRP. To view a VRRP in a VRF configuration, use the show commands.
  • Page 925 Figure 120. VRRP in a VRF: Non-VLAN Example Example of Configuring VRRP in a VRF on Switch-1 (Non-VLAN) Switch-1 S1(conf)#ip vrf default-vrf 0 S1(conf)#ip vrf VRF-1 1 S1(conf)#ip vrf VRF-2 2 S1(conf)#ip vrf VRF-3 3 S1(conf)#interface TenGigabitEthernet 1/1 S1(conf-if-te-1/1)#ip vrf forwarding VRF-1 S1(conf-if-te-1/1)#ip address 10.10.1.5/24 S1(conf-if-te-1/1)#vrrp-group 11 % Info: The VRID used by the VRRP group 11 in VRF 1 will be 177.
  • Page 926 % Info: The VRID used by the VRRP group 15 in VRF 3 will be 243. S1(conf-if-te-1/3-vrid-105)#priority 255 S1(conf-if-te-1/3-vrid-105)#virtual-address 20.1.1.5 S1(conf-if-te-1/3)#no shutdown Dell#show vrrp tengigabitethernet 2/8 ------------------ TenGigabitEthernet 2/8, IPv4 VRID: 1, Version: 2, Net: 10.1.1.1 VRF: 0 default State: Master, Priority: 100, Master: 10.1.1.1 (local)
  • Page 927 S1(conf-if-vl-300)#ip address 20.1.1.5/24 S1(conf-if-vl-300)#tagged TenGigabitethernet 1/1 S1(conf-if-vl-300)#vrrp-group 15 % Info: The VRID used by the VRRP group 15 in VRF 3 will be 243. S1(conf-if-vl-300-vrid-101)#priority 255 S1(conf-if-vl-300-vrid-101)#virtual-address 20.1.1.5 S1(conf-if-vl-300)#no shutdown Dell#show vrrp vrf vrf1 vlan 400 ------------------ Virtual Router Redundancy Protocol (VRRP)
  • Page 928 Virtual MAC address: 00:00:5e:00:01:01 Virtual IP address: 10.1.1.100 Authentication: (none) Dell#show vrrp vrf vrf2 port-channel 1 ------------------ Port-channel 1, IPv4 VRID: 1, Version: 2, Net: 10.1.1.1 VRF: 2 vrf2 State: Master, Priority: 100, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec...
  • Page 929 S2(conf-if-vl-300-vrid-101)#virtual-address 20.1.1.5 S2(conf-if-vl-300)#no shutdown Dell#show vrrp vrf vrf1 vlan 400 ------------------ Vlan 400, IPv4 VRID: 1, Version: 2, Net: 10.1.1.1 VRF: 1 vrf1 State: Master, Priority: 100, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 278, Gratuitous ARP sent: 1...
  • Page 930: Vrrp For Ipv6 Configuration

    192.168.0.254 no shutdown The following example shows viewing the status of VRRP in a VRF (global). Dell#show vrrp vrf red ------------------ TenGigabitEthernet 1/4, IPv4 Vrrp-group: 4, VRID: 65, Version: 2, Net: 192.168.0.1 VRF: 1 red State: Master, Priority: 100, Master: 192.168.0.1 (local)
  • Page 931 Figure 121. VRRP for IPv6 Topology NOTE: In a VRRP or VRRPv3 group, if two routers come up with the same priority and another router already has MASTER status, the router with master status continues to be master even if one of two routers has a higher IP or IPv6 address.
  • Page 932 NOTE: You must configure a virtual link local (fe80) address for each VRRPv3 group created for an interface. The VRRPv3 group becomes active as soon as you configure the link local address. Afterwards, you can configure the group’s virtual IPv6 address. R2(conf-if-te-1/1-vrid-10)#virtual-address fe80::10 NOTE: The virtual IPv6 address you configure should be the same as the IPv6 subnet to which the interface belongs.
  • Page 933 00:00:5e:00:02:ff Virtual IP address: 10:1:1::255 fe80::255 Dell# Dell#show vrrp vrf vrf1 vlan 400 Vlan 400, IPv6 VRID: 255, Version: 3, Net: fe80::201:e8ff:fe8a:e9ed VRF: 1 vrf1 State: Master, Priority: 200, Master: fe80::201:e8ff:fe8a:e9ed (local) Hold Down: 0 centisec, Preempt: TRUE, AdvInt: 100 centisec...
  • Page 934 Virtual MAC address: 00:00:5e:00:02:ff Virtual IP address: 10:1:1::255 fe80::255 Dell#show vrrp vrf vrf2 port-channel 1 Port-channel 1, IPv6 VRID: 255, Version: 3, Net: fe80::201:e8ff:fe8a:fd76 VRF: 2 vrf2 State: Backup, Priority: 90, Master: fe80::201:e8ff:fe8a:e9ed Hold Down: 0 centisec, Preempt: TRUE, AdvInt: 100 centisec...
  • Page 935: Series Debugging And Diagnostics

    Z-Series Debugging and Diagnostics This chapter describes debugging and diagnostics for the Z-Series platform. Offline Diagnostics The offline diagnostics test suite is useful for isolating faults and debugging hardware. The diagnostics tests are grouped into three levels: • Level 0 — Level 0 diagnostics check for the presence of various components and perform essential path verifications.
  • Page 936 Start diagnostics on the unit. diag When the tests are complete, the system displays the syslog Message 1 shown and automatically reboots the unit. Dell#00:20:26 : Diagnostic test results are stored on file: flash:/ TestReport-SU-0.txt Dell#00:20:31: %Z9000:0 %DIAGAGT-6-DA_DIAG_DONE: Diags finished on stack unit 0 Diags completed...
  • Page 937 As shown in the following output example, log messages differ somewhat when diagnostics are done on a standalone unit. Dell#diag stack-unit 1 alllevels Warning - diagnostic execution will cause multiple link flaps on the peer side - advisable to shut...
  • Page 938 ERROR: Getting PSU -1 power status failed. The following example shows how to run offline diagnostics in Debug mode. NOTE: Dell Networking highly recommends reloading the system after running the offline diagnostics in Debug mode. Dell#diag stack-unit 0 level0 verbose no-reboot...
  • Page 939: Trace Logs

    Networking OS buffers trace messages which are continuously written by various Dell Networking OS software tasks. Each TRACE message provides the date, time, and name of the Dell Networking OS process. All messages are stored in a ring buffer that you can save to a file either manually or automatically after failover.
  • Page 940: Auto Save On Crash Or Rollover

    NOTE: Non-management member units do not support this functionality. Last Restart Reason If a Z9000 system restarted for some reason (automatically or manually), the show system command output includes the reason for the restart. The following table shows the reasons displayed in the output and their corresponding causes.
  • Page 941 {0-11} unit {0-1} table-dump {table name} The Z9000 supports thirty–two 40G ports or one-hundred twenty–eight 10G ports on four port-pipes, which are also called units. The system displays internal port numbers, not the external port numbers that you see.
  • Page 942 Internal Unit User Ports User Ports User Ports User Ports No User No User Port Number from 0 to 31 from 32 to from 64 to from 96 to Ports on Unit Ports on Unit on Unit 0 63 on Unit 1 95 on Unit 2 127 on Unit 3 Internal...
  • Page 943: Environmental Monitoring

    Internal Internal Environmental Monitoring The Z9000 components use environmental monitoring hardware to detect transmit power readings, receive power readings, and temperature updates. To receive periodic power updates, enable the enable optic-info-update interval command. The output in the following example displays the environment status of the RPM.
  • Page 944: Troubleshoot An Over-Temperature Condition

    To bring back the line card online, use the power-on command in EXEC mode. In addition, Dell Networking requires that you install blanks in all slots without a line card to control airflow for adequate system cooling.
  • Page 945: Buffer Tuning

    OID String OID Name Description NOTE: These OIDs are only generated if you enable the enable optic-info- update-interval command. Hardware MIB Buffer Statistics .1.3.6.1.4.1.6027.3.16.1.1.4 fpPacketBufferTable View the modular packet buffers details per stack unit and the mode of allocation. .1.3.6.1.4.1.6027.3.16.1.1.5 fpStatsPerPortTable View the forwarding plane statistics containing the packet...
  • Page 946: Buffer Tuning Points

    • Dynamic buffer — is shared memory that is allocated as needed, up to a configured limit. Using dynamic buffers provides the benefit of statistical buffer sharing. An interface requests dynamic buffers when its dedicated buffer pool is exhausted. The buffer manager grants the request based on three conditions: –...
  • Page 947: Decide To Tune Buffers

    Decide to Tune Buffers Dell Networking recommends exercising caution when configuring any non-default buffer settings, as tuning can significantly affect system performance. The default values work for most cases. As a guideline, consider tuning buffers if traffic is very bursty (and coming from several interfaces). In this case: •...
  • Page 948 Displaying the Default Buffer Profile Displaying Buffer Profile Allocations Dell Networking OS Behavior: If you attempt to apply a buffer profile to a non-existent port-pipe, Dell Networking OS displays the following message. However, the configuration still appears in the running- config.
  • Page 949: Sample Buffer Profile Configuration

    Sample Buffer Profile Configuration The two general types of network environments are sustained data transfers and voice/data. Dell Networking recommends a single-queue approach for data transfers, as shown in the following example. Single Queue Application with Default Packet Pointers (S50N Output)
  • Page 950: Troubleshooting Packet Loss

    Total IngMac Drops :0 Total Mmu Drops :0 Total EgMac Drops :0 Total Egress Drops :0 Dell#show hardware stack-unit 0 drops unit 0 Port# :Ingress Drops :IngMac Drops :Total Mmu Drops :EgMac Drops :Egress Drops 1 0 0 0 0 0...
  • Page 951: Displaying Dataplane Statistics

    6 0 0 0 0 0 7 0 0 0 0 0 8 0 0 0 0 0 Z9000-B4#show hardware stack-unit 0 drops unit 2 UserPort PortNumber Ingress Drops IngMac Drops Total Mmu Drops EgMac Drops Egress Drops Internal 39...
  • Page 952: Displaying Stack Member Counters

    Dell#sh hardware stack-unit 2 cpu party-bus statistics Input Statistics: 27550 packets, 2559298 bytes 0 dropped, 0 errors Output Statistics: 1649566 packets, 1935316203 bytes 0 errors Displaying Stack Member Counters The show hardware stack-unit 0–7 {counters | details | port-stats [detail] | register} command displays internal receive and transmit statistics, based on the selected command option.
  • Page 953: Mini Core Dumps

    To undo this command, use the no logging coredump server command. Mini Core Dumps Dell Networking OS supports mini core dumps for kernel crashes. The mini core dump applies to Master units. Kernel mini core dumps are always enabled. The mini core dumps contain the stack space and some other very minimal information that can be used to debug a crash.
  • Page 954 saved file. The maximum file size for a TCP dump capture is 1MB. When a file reaches 1MB, a new file is created, up to the specified total number of files. Maximize the number of packets recorded in a file by specifying the snap-length to capture the file headers only.
  • Page 955: Standards Compliance

    Standards Compliance This chapter describes standards compliance for Dell Networking products. NOTE: Unless noted, when a standard cited here is listed as supported by the Dell Networking Operating System (OS), Dell Networking OS also supports predecessor standards. One way to search for predecessor standards is to use the http://tools.ietf.org/ website.
  • Page 956: Rfc And I-D Compliance

    9,252 bytes RFC and I-D Compliance Dell Networking OS supports the following standards. The standards are grouped by related protocol. The columns showing support by platform indicate which version of Dell Networking OS first supports the standard. General Internet Protocols The following table lists the Dell Networking OS support per platform for general internet protocols.
  • Page 957: General Ipv4 Protocols

    General IPv4 Protocols The following table lists the Dell Networking OS support per platform for general IPv4 protocols. Table 65. General IPv4 Protocols RFC# Full Name S-Series Internet Protocol 7.6.1 Internet Control Message Protocol 7.6.1 An Ethernet Address Resolution 7.6.1...
  • Page 958: General Ipv6 Protocols

    General IPv6 Protocols The following table lists the Dell Networking OS support per platform for general IPv6 protocols. Table 66. General IPv6 Protocols RFC# Full Name S-Series 1886 DNS Extensions to support IP version 6 7.8.1 1981 (Partial) Path MTU Discovery for IP version 6 7.8.1...
  • Page 959: Open Shortest Path First (Ospf)

    7.8.1 draft-ietf-idrrestart- 06 Graceful Restart Mechanism for BGP 7.8.1 Open Shortest Path First (OSPF) The following table lists the Dell Networking OS support per platform for OSPF protocol. Table 68. Open Shortest Path First (OSPF) RFC# Full Name S-Series/Z-Series 1587 The OSPF Not-So-Stubby Area (NSSA) 7.6.1...
  • Page 960: Intermediate System To Intermediate System (Is-Is)

    Intermediate System to Intermediate System (IS-IS) The following table lists the Dell Networking OS support per platform for IS-IS protocol. Table 69. Intermediate System to Intermediate System (IS-IS) RFC# Full Name S-Series 1142 OSI IS-IS Intra-Domain Routing Protocol (ISO DP 10589)
  • Page 961: Multicast

    -sm-v2-new- 05 Protocol Independent Multicast - 7.8.1 PIM-SM for IPv4 Sparse Mode (PIM-SM): Protocol Specification (Revised) Network Management The following table lists the Dell Networking OS support per platform for network management protocol. Table 72. Network Management RFC# Full Name S4810...
  • Page 962 RFC# Full Name S4810 S4820T Z-Series Management of TCP/IP- based internets 1157 A Simple Network 7.6.1 Management Protocol (SNMP) 1212 Concise MIB Definitions 7.6.1 1215 A Convention for Defining 7.6.1 Traps for use with the SNMP 1493 Definitions of Managed 7.6.1 Objects for Bridges [except for the...
  • Page 963 RFC# Full Name S4810 S4820T Z-Series Digital Hierarchy (SONET/ SDH) Interface Type 2570 Introduction and 7.6.1 Applicability Statements for Internet Standard Management Framework 2571 An Architecture for 7.6.1 Describing Simple Network Management Protocol (SNMP) Management Frameworks 2572 Message Processing and 7.6.1 Dispatching for the Simple Network...
  • Page 964 RFC# Full Name S4810 S4820T Z-Series radiusAuthClientMalforme dAccessResponses radiusAuthClientUnknown Types radiusAuthClientPacketsD ropped 2698 A Two Rate Three Color 9.5.(0.0) 9.5.(0.0) 9.5.(0.0) Marker 3635 Definitions of Managed 7.6.1 Objects for the Ethernet- like Interface Types 2674 Definitions of Managed 7.6.1 Objects for Bridges with Traffic Classes, Multicast Filtering and Virtual LAN Extensions...
  • Page 965 RFC# Full Name S4810 S4820T Z-Series Network Management Protocol (SNMP) 3418 Management Information 7.6.1 Base (MIB) for the Simple Network Management Protocol (SNMP) 3434 Remote Monitoring MIB 7.6.1 Extensions for High Capacity Alarms, High- Capacity Alarm Table (64 bits) 3580 IEEE 802.1X Remote 7.6.1 Authentication Dial In...
  • Page 966 RFC# Full Name S4810 S4820T Z-Series Gateway Protocol (BGP-4) using SMIv2 draft-ietf-isis- Management Information wgmib- 16 Base for Intermediate System to Intermediate System (IS-IS): isisSysObject (top level scalar objects) isisISAdjTable isisISAdjAreaAddrTable isisISAdjIPAddrTable isisISAdjProtSuppTable draft-ietf-netmod- Defines a YANG data 9.2(0.0) 9.2(0.0) 9.2(0.0) interfaces-cfg-03 model for the...
  • Page 967 RFC# Full Name S4810 S4820T Z-Series Multiple Spanning Tree Protocol sFlow.org sFlow Version 5 7.7.1 sFlow.org sFlow Version 5 MIB 7.7.1 FORCE10-BGP4- Force10 BGP MIB (draft- 7.8.1 V2-MIB ietf-idr-bgp4-mibv2-05) f10–bmp-mib Force10 Bare Metal 9.2(0.0) 9.2.(0.0) 9.2.(0.0) Provisioning MIB FORCE10-FIB-MIB Force10 CIDR Multipath Routes MIB (The IP Forwarding Table provides information that...
  • Page 968: Mib Location

    You also can obtain a list of selected MIBs and their OIDs at the following URL: https://www.force10networks.com/CSPortal20/Main/Login.aspx Some pages of iSupport require a login. To request an iSupport account, go to: https://www.force10networks.com/CSPortal20/AccountRequest/AccountRequest.aspx If you have forgotten or lost your account information, contact Dell TAC for assistance. Standards Compliance...

Table of Contents