Moons' MBDV Series Hardware Manual

Moons' MBDV Series Hardware Manual

Low voltage servo system
Table of Contents

Advertisement

Quick Links

MBDV Series
Low Voltage Servo System
Hardware Manual
SHANGHAI AMP&MOONS' AUTOMATION CO.,LTD.
Rev. 2.0
07/27/2023

Advertisement

Table of Contents
loading
Need help?

Need help?

Do you have a question about the MBDV Series and is the answer not in the manual?

Questions and answers

Summary of Contents for Moons' MBDV Series

  • Page 1 MBDV Series Low Voltage Servo System Hardware Manual SHANGHAI AMP&MOONS’ AUTOMATION CO.,LTD. Rev. 2.0 07/27/2023...
  • Page 2: Table Of Contents

    MBDV Hardware Manual Contents 1 Introduction ........................7 1.1 About this manual ....................7 1.2 MBDV Series Low Voltage Servo Documentation ..........7 1.3 Safety ........................7 1.4 Safety sign ......................7 1.5 Safety Precautions ....................8 1.5.1 Storage ......................8 1.5.2 Installation Precautions ................8 1.5.3 Wiring Precautions ..................8 1.5.4 Precautions during trial operation ..............9...
  • Page 3 MBDV Hardware Manual 4.2.3 Driver terminal description ................ 28 4.2.4 Considerations when Wiring ..............28 4.2.5 Precautions for the use of drag chain cables ........... 29 4.2.6 Recommended Wires ................29 4.2.7 Crimp terminal ..................30 4.2.8 Ground terminal ..................30 4.3 Main &...
  • Page 4 MBDV Hardware Manual 7 Control Modes and Functions ................... 59 7.1 I/O signal setting ....................59 7.1.1  Input Signal Configuration ................ 59 7.1.2  Output signal configuration ............... 60 7.1.3 Servo Enable .................... 61 7.1.4 Alarm Reset ....................61 7.1.5 CW, CCW Limit ..................62 7.1.6 Gain Select ....................
  • Page 5 MBDV Hardware Manual 7.7.1  Dynamic braking when Servo Off signal triggered ........95 7.7.2 Dynamic braking when driver fault present ..........95 7.8 Home function ....................95 7.8.1 Back to the origin basic concept ............... 97 7.8.2 Introduction to the way of returning to the origin ........97 8 ...
  • Page 6 MBDV Hardware Manual Disclaimer The information in this manual was accurate and reliable at the time of its publication. Shanghai Anpu Mingzhi Automation Equipment Co., Ltd. reserves the right to change the product specifications described in this manual at any time without prior notice. Trademark Rights  All proper names mentioned in this manual are the trademarks of their respective owners. Customer service Shanghai Anpu Mingzhi Automation Equipment Co., Ltd.
  • Page 7: Introduction

    MBDV Hardware Manual 1 Introduction 1.1 About this manual This manual is the hardware manual of MBDV series low voltage servo driver. It provides installation, configuration and basic operation of MBDV servo unit. This document is intended for  qualified personnel who transport, assemble, and maintain this equipment. 1.2 MBDV Series Low Voltage Servo Documentation This manual is part of a series of documents, the entire series consists of the following: ● MBDV series low voltage servo hardware manual. Details hardware installation, configuration ...
  • Page 8: Safety Precautions

    MBDV Hardware Manual 1.5 Safety Precautions 1.5.1 Storage Please note the following when storing: ◆ Please put this drive in the packing box and store it in a dry, dust-free place away from direct sunlight ◆ Storage ambient temperature between -20 ℃ to +65 ℃ ◆...
  • Page 9: Precautions During Trial Operation

    ◆ Use servo motors with brakes on vertical loads to avoid equipment falling during alarm, failure, power failure 1.6 Certified Specifications MBDV series low voltage servo products are designed to meet the following standards. Drive Motor  ...
  • Page 10: Maintenance And Inspection

    MBDV Hardware Manual 1.7 Maintenance and Inspection 1.7.1 Check items and cycles The normal use conditions of the servo are: Annual average ambient temperature: 30 ℃ Average load rate: below 80% Daily operating time: 20 hours or less. The items of daily inspection are as follows: Type Inspection cycle...
  • Page 11: Basic Information

    2.2 Drive model introduction 2.2.1 Drive model description MBDV - 2X - 5 20A C - *** ① ② ③ ④ ⑤ MBDV Series Current ① ④ # of Axes 20A: Continuous Curent 20A (RMS) ② Empty: Single axis Peak Cureent 60A (RMS)
  • Page 12: Drive Specifications

    MBDV Hardware Manual 2.2.2 Drive Specifications Main circuit power supply 24V ~ 60VDC ± 10% Input power Control loop power 24VDC ± 10% Insulation withstand voltage One time to ground: withstand voltage 500 VAC, 1 min, (leak: 10 mA) ◆ Use temperature: 0 ~ 50 ℃ (if the ambient temperature exceeds 45 ℃, please Temperature place it in a well-ventilated place) ◆...
  • Page 13: Dimensions Of The Driver (Unit: Mm)

    MBDV Hardware Manual 2.2.3 Dimensions of the driver (Unit: mm) 2.2.3.1 MBDV-520AC 2.2.3.2 MBDV-2X-520AC Rev. 2.0 07/27/2023...
  • Page 14: Motor Model Introduction

    MBDV Hardware Manual 2.3 Motor model introduction 2.3.1 Motor nameplate description Model Number SM0602GSL-KCY-NNV Serial No 2109179002 Input Voltage 11.8A Rated 12.9A Stall Rated Output Power 400W Output torque, speed 1.27Nm 3000r/min Maximum speed 4000r/min Protection class 2.3.2 Motor model description S M 0 6 0 2 G S L - K C Y - N N V SM Series Custom code...
  • Page 15: Motor Specifications And Dimensions

    MBDV Hardware Manual 2.3.3 Motor Specifications and Dimensions 2.3.3.1 □ 40mm specifications and dimensions □ Specification Type SM0402JSL-KCY-□ NV SM0402GSL-KCY-□ NV Recommended drive input voltage at rated speed(DC-Bus) Rated Output Power watts Rated Speed 3000 3000 Max.Speed 4500 4200 Rated Torque 0.32 0.32 Peak Torque 0.96 0.96 Rated Current A (rms) Peak Current A (rms)
  • Page 16 MBDV Hardware Manual 2.3.3.2 □ 60mm specification and size □ Specification Type SM0601JSL-KCY-□NV SM0601GSL-KCY-□NV SM0602GSL-KCY-□NV Recommended drive input voltage at rated speed(DC-Bus) Rated Output Power watts Rated Speed 3000 3000 3000 Max.Speed 4200 3900 4000 Rated Torque 0.64 0.64 1.27 Peak Torque 1.92 1.92 3.81 Rated Current A (rms) 16.3...
  • Page 17 MBDV Hardware Manual 2.3.3.3 □ 80mm specification and size □ Specification Type SM0803GSL-KCY-NNV SM0803GSL-KCY-BNV Recommended drive input voltage at rated speed(DC-Bus) Rated Output Power watts Rated Speed 3000 3000 Max.Speed 3600 3600 Rated Torque Peak Torque Rated Current A (rms) 18.8 18.8 Peak Current A (rms) 56.7 56.7 Voltage Constant ±5%...
  • Page 18 MBDV Hardware Manual 2.3.3.4 □ 60mm specification and size □ Specification Type SM0601JEL-KCY-□NV SM0601GEL-KCY-□NV SM0602GEL-KCY-□NV Recommended drive input voltage at rated speed(DC-Bus) Rated Output Power watts Rated Speed 3000 3000 3000 Max.Speed 4200 3900 4000 Rated Torque 0.64 0.64 1.27 Peak Torque 1.92 1.92 3.81 Rated Current A (rms) 16.3...
  • Page 19 MBDV Hardware Manual 2.3.3.5 □ 80mm specifications and dimensions (unit: mm) □ Specification Type SM0803GEL-KCY-NNV SM0803GEL-KCY-BNV Recommended drive input voltage at rated speed(DC-Bus) Rated Output Power watts Rated Speed 3000 3000 Max.Speed 3600 3600 Rated Torque Peak Torque Rated Current A (rms) 18.8 18.8 Peak Current A (rms) 56.7 56.7 Voltage Constant ±5%...
  • Page 20: General Motor Specifications

    MBDV Hardware Manual 2.4 General Motor Specifications Insulation class Class B (130 ℃) Protection class IP65 (except shaft penetration) Installation conditions Indoor installation, avoid direct sunlight, corrosive and flammable gases Ambient temperature Operating temperature: 0 ℃ - 40 ℃; storage temperature: -20 ℃ - 60 ℃ Wet Spend Storage and use: 20 - 85%RH (No condensation) Ocean pull Altitude below 1000m Vibrate verb: move...
  • Page 21: Installation

    MBDV Hardware Manual 3 Installation 3.1 Storage conditions Please note the following when storing: • Please put this drive in the packing box and store it in a dry, dust-free place away from direct sunlight • Storage ambient temperature between -20 ℃ to +65 ℃ •...
  • Page 22: Precautions For Motor In Oil And Water Environment

    MBDV Hardware Manual • It is recommended to use a disruptive coupling specially designed for servo motors, which can provide some buffering during eccentricity or deflection. • When installing the coupling, please wipe clean the anti-rust oil on the shaft end of the motor. • When using the keyway, please use the standard key in the motor box. •...
  • Page 23: Wiring

    MBDV Hardware Manual 3.4.3 Wiring • If using a cable chain, use a super flexible cable. And ensure that there is a bending diameter  of more than 100mm. • Do not twist the cable. • When moving the motor, do not pull on the cable. • Do not use the same sleeve for the main circuit cable and the input/output signal cable / encoder cable, and do not bundle them together.
  • Page 24: System Configuration And Wiring

    MBDV Hardware Manual 4 System Configuration and Wiring 4.1 Electromagnetic Compatibility (EMC) MBDV servo driver uses high-speed switching elements inside, which will generate high frequency or low frequency during normal operation interference, and interfere with peripheral equipment through conduction or radiation. There is also a low-voltage unit inside the servo drive, which is likely to be disturbed by the noise of the peripheral equipment of the drive.
  • Page 25: Shielding Of Motor Cables

    MBDV Hardware Manual 4.1.2 Shielding of motor cables The selection of motor cables with shielding nets and properly installed shielding nets can achieve better EMC effects and interference suppression effects. Please note the following: • Use shielded cable (Better if there is a double-layer isolation layer) • The shielding nets at both ends of the motor cable must be grounded with the shortest distance and maximum contact area. Use clamps to fix the shielding nets at both ends of the motor ...
  • Page 26: External Circuit Wiring

    MBDV Hardware Manual 4.2 External circuit wiring 4.2.1 Interface introduction 4.2.1.1 MBDV-520AC Wireless Module Interface Switch Settings STO Interface CANopen/RS485 Communication Interface I/O Interface 2-digital LED display Auxiliary Encoder Interface power supply Main Brake Motor Interface power supply Braking resistance 4.2.1.2 MBDV-2X-520AC Wireless Module Interface...
  • Page 27: Dip Switch Function Description

    MBDV Hardware Manual 4.2.2 DIP switch function description The MBDV driver has a key DIP switch, which is used to set the node address, baud rate and optional terminal matching resistance of CAN open communication. The specific definitions are as  follows. • MBDV-520AC Node address: Function Description The node address is set by Luna software, the default is 1 Node address is 1 Node address is 2 Node address is 3...
  • Page 28: Driver Terminal Description

    MBDV Hardware Manual Baud rate: Function Description The baud rate is set by Luna software, the default is 1Mbps 500kpbs Select the terminal matching resistor: Function Description No resistor connector between CAN_H and CAN_L Connect a 120 Ω resistor between CAN_H and CAN_L 4.2.3 Driver terminal description Type Name Description...
  • Page 29: Precautions For The Use Of Drag Chain Cables

    MBDV Hardware Manual 4.2.5 Precautions for the use of drag chain cables When the motor cable needs to be moved or the cable is installed in a drag chain, please use a special flexible and bend-resistant cable. Ordinary cables are easily damaged during repeated  bending, causing the servo motor to fail to work properly. When using drag chain cables, make sure that: •...
  • Page 30: Crimp Terminal

    MBDV Hardware Manual 4.2.6.1 Recommended Wires  The recommended cables for each part of the driver are as follows: Wire Diameter (AWG) Connect Rated Connector Connector Connector Drive and matching servo Connector Motor power Main motor Encoder Power 24V/GND U/V/W Brake Encoder ground 1.0 ~ 1.5mm 1.0 ~ 1.5mm...
  • Page 31: Main & Aux - Driver Power Wiring Method

    MBDV Hardware Manual 4.3 Main & AUX - Driver power wiring method MBDV series DC servo has two power supplies. Function Input specification Main power V+, V- Drive main power input 24 ~ 60VDC In the event of a mains power failure, the following two applications require auxiliary power to be turned on:...
  • Page 32: Encoder -The Connection Method Between The Driver And The Motor Encoder Line

    MBDV Hardware Manual 4.5 Encoder -the connection method between the driver and the motor encoder line 4.5.1 The block diagram of the connection between the driver and the motor encod- er line 4.5.2 Encoder Pinout A/B/Z + Hall 总线型编码器 SPI type encoder A/B/Z + Hall MISO- MISO+ MOSI- MOSI+ SCK- SCK+ DGND DGND Shield Shield...
  • Page 33: Encoder Line Interface Definition

    MBDV Hardware Manual 4.5.3 Encoder line interface definition Housing: 501646-1600(Molex) Crimp: 501648-1000(Molex) Applicable motor encoder type Signal Color —— —— —— —— MISO+ Blue MISO- Blue / Black MOSI+ Green MOSI- Green / Black Communication encoder SCK+ Yellow SCK- Yellow / Black Brown Brown / Black DGND Black...
  • Page 34: Using An Electromagnetic Brake

    MBDV Hardware Manual 4.6 Using an electromagnetic brake Servo motors are used in loads such as vertical axes. When the motor is not enabled or powered off, in order to prevent the mechanical mechanism driven by the motor from falling due to gravity  and other reasons, it is necessary to use a servo motor with an electromagnetic brake. Note: The brake of the servo motor can only be used to maintain the position of the motor when the motor is not enabled or powered off. Do not use it as a brake during deceleration, otherwise the ...
  • Page 35: Brake Action Sequence

    MBDV Hardware Manual 4.6.3 Brake action sequence Since the brake has an action delay when releasing and braking, in order to avoid damage to the brake, it is necessary to pay attention to the action sequence during use. S_ON Signal Motor Enable Brake Signal Brake Release Signal...
  • Page 36: Calculation Method Of Regenerative Energy

    The following provides a simple method to quickly calculate the required regenerative energy absorption resistor. 1) Calculate the energy E M when the motor decelerates The following table shows the energy generated by the MBDV series servo motor decelerating from 3000rpm to 0rpm without external load. The energy...
  • Page 37 MBDV Hardware Manual 4) Analyze When P < 0, that is, the total power generated during the deceleration process is less than the power absorbed by the bus capacitor in the driver, so no external absorption resistor is required. When P >...
  • Page 38: Wiring Method

    MBDV Hardware Manual 4.7.2  Wiring method The following is the block diagram depicting how a regen resistor is wired to an MBDV servo drive. 4.7.3 Device setting parameters Related parameters Parameter Instruction Name Value range Defaults Unit Description Regenerative Set the resistance value of the regenerative P1-19 10 ~ 32000 resistor resistance...
  • Page 39: Communication Interface

    MBDV Hardware Manual 4.8 Communication Interface 4.8.1 USB- Host computer debugging interface The USB port is used for establashing communication between the MBDV servo drive and the PC based Luna software. Luna software allows users to set control modes, modify parameters, tune the PID loop and perform other configuration tasks. Logo Function USB power Data-...
  • Page 40: I/O Input And Output Signal Wiring (Mbdv-520Ac)

    MBDV Hardware Manual 4.9 I/O Input and output signal wiring (MBDV-520AC) 4.9.1 I/O Input and output signal specifications I/O port of MBDV-520AC low-voltage servo driver is used to connect input and output signals. The pin definitions are as follows: AOUT- AOUT+ BOUT- BOUT+ ZOUT- ZOUT+ YCOM XCOM The input and output signal specifications are as follows: Classification Description 4 optically isolated inputs, can be configured by parameters, 24VDC, maximum current  Inputs 20mA Digital Signals 2 optically isolated outputs, can be configured by parameters, maximum 30 VDC, maximum ...
  • Page 41: Input And Output Pinout

    MBDV Hardware Manual 4.9.3 Input and Output Pinout Pin NO. Signal Description AOUT+ Encoder output A+ AOUT- Encoder output A- BOUT+ Encoder output B+ BOUT- Encoder output B- ZOUT+ Encoder output Z+ ZOUT- Encoder output Z- DGND Digital ground DGND Digital ground Digital input 1 Digital input 2...
  • Page 42 MBDV Hardware Manual ◆ A/B/Z differential signal connection example Servo Drive Master AOUT+ 10Ω AOUT- 10Ω BOUT+ 10Ω BOUT- 10Ω ZOUT+ 10Ω ZOUT- 10Ω DGND DGND Note: Make sure to connect the host computer to the digital ground of the drive. 4.9.3.2 Digital Inputs The MBDV-520AC low voltage servo driver has 4 digital input signals. Each digital input signal can be configured to have a special fixed function. If a fixed function is assigned to an input, you may ...
  • Page 43 MBDV Hardware Manual Note: *1. The definition of logic states for inputs and outputs is as follows: Closed: The driver digital input circuit forms a loop, and current flows in or out of the input pins. Open: The driver digital input circuit does not form a loop and no current flows into or out of the  input pins. 2. For details, please see: 7.1.1 Input signal setting ◆ Digital Input and Output Wiring Instructions (MBDV-520AC) The MBDV-520AC has 4 optically isolated, single-ended inputs with a common voltage (COM) point These inputs require that they be powered separately.
  • Page 44 MBDV Hardware Manual ◆ Digital input X1 ~X4 Wiring example A. Controller---SINK mode B. Controller---Sourcing mode Master/Controller 5~24VDC Master/Controller 5~24VDC Servo Drive XCOM Servo Drive 2.4K X1 ~ X4 X1 ~ X4 2.4K 2.4K XCOM 2.4K 0VDC 0VDC C. Connect to Relay or Switch(XCOM connect to +24V) D.
  • Page 45: Input And Output Signals (Mbdv-2X-520Ac)

    MBDV Hardware Manual ◆ The internal circuit block diagram of Y1 ~ Y2 are as shown below. YCOM 14 ◆ Y1 ~ Y2 connection examples A. Connected to the control's optocoupler B. Connected to resistor load Master/Controller Servo Drive 24VDC 24VDC Servo Drive Y1 / Y2...
  • Page 46: I/O Signal Pin Block Diagram

    MBDV Hardware Manual Describe Axis Classification 4 optically isolated inputs, configurable via parameters, max 24 VDC, max withstand  Inputs current of 20 mA Digital signals 2 optically isolate outputs, configurable via parameters, max 30 VDC, max withstand  Outputs current of 100 mA 4 optically isolated inputs, configurable via parameters, max 24 VDC, max withstand  Inputs current of 20 mA Digital signals 2 optically isolate outputs, configurable via parameters, max 30 VDC, max withstand  Outputs current of 100 mA 4.10.2 I/O Signal Pin Block Diagram 2_X1 1_X1 2.4KΩ 2.4KΩ 2.4KΩ...
  • Page 47: Input And Output Pinout

    MBDV Hardware Manual 4.10.3 Input and Output Pinout Pin NO. Signal Description 1_X1 Axis1_input 1 1_X2 Axis1_input 2 1_X3 Axis1_input 3 1_X4 Axis1_input 4 1_XCOM Axis1_input COM 1_YCOM Axis1_output COM 1_Y1 Axis1_output 1 1_Y2 Axis1_output 2 2_X1 Axis2_input 1 2_X2 Axis2_input 2 2_X3 Axis2_input 3...
  • Page 48 MBDV Hardware Manual ◆ Digital Input and Output Wiring Instructions The MBDV-2X-520AC has 4 optically isolated, single-ended inputs with a common voltage (COM) point for each axis. These inputs require that they be powered separately. If using a PLC, you may use the 24 V output from the PLC.
  • Page 49 MBDV Hardware Manual ◆ Digital input X1 ~X4 Wiring example A. Controller---SINK mode B. Controller---Sourcing mode Master/Controller 5~24VDC Master/Controller 5~24VDC Servo Drive XCOM Servo Drive 2.4K X1 ~ X4 X1 ~ X4 2.4K 2.4K XCOM 2.4K 0VDC 0VDC C. Connect to Relay or Switch(XCOM connect to +24V) D.
  • Page 50 MBDV Hardware Manual 4.10.3.2 Digital output Y1 ~ Y2 The MBDV-520AC low voltage servo driver has 2 digital output signals with a common voltage (COM) point per axis. Each digital output signal can be configured to have a special fixed function.  If a fixed function is assigned to an output, you may also configure the logic of the output.  Maximum withstand voltage is 30VDC, and the current is 100mA. Signal Factory default I/O-pin Corresponding Signal name Signal description Instruction Signal name Output logic Defaults...
  • Page 51: Encoder Feedback Output

    MBDV Hardware Manual ◆ Connection examples A. Connected to the control's optocoupler B. Connected to resistor load Master/Controller Servo Drive 24VDC 24VDC Servo Drive Y1 / Y2 YCOM YCOM 0VDC 0VDC C.Connected to inductive load(Relay.etc.) 24VDC Servo Drive Y1 / Y2 Relay YCOM 1.
  • Page 52: Sto - Safe Torque Off Function

    MBDV Hardware Manual ◆ A/B/Z phase connection example 伺服驱动器 上位机 AOUT+ 10Ω AOUT- 10Ω BOUT+ 10Ω BOUT- 10Ω ZOUT+ 10Ω ZOUT- 10Ω DGND DGND Note: Make sure to connect the host computer to the digital ground of the drive. 4.11 STO - Safe torque off function The MBDV series servo drives support Safe Torque Off functionality. Each drive comes with an ...
  • Page 53: Sto Function Connector

    MBDV Hardware Manual 4.11.2 STO Function Connector 4.11.2.1 STO Internal Circuit Diagram  The pinout of the STO connector is as follows: 4.11.2.2 STO Signal Definitions  The pin definition of driver CN5 is as follows: Connector and terminal models are as follows: Model manufacturer Connector 43025-1000 MOLEX 43030-0005 MOLEX 4.11.2.3 STO Signal Definitions  STO function input and output signals are as follows Signal name Logo Description...
  • Page 54 MBDV Hardware Manual 4.11.2.4 STO connection example ◆ Connection with safety switch Safety Switch Servo Drive Safety Switch 1 Safety Switch 2 Safety Output ◆ Connection with safety light curtains 24VDC Servo Drive Safety Switch 1 Safety Switch 2 0VDC Safety Output Rev.
  • Page 55: Led Display

    MBDV Hardware Manual 5 LED Display 5.1 Display content 5.1.1 Decimal point meaning Display content Description ◆ Motor Enabled Flag: The decimal point in the lower right corner of the LED panel is the identification bit alerting users to the servo motor's status Solid: Motor enabled Blank: Motor is disabled Enable identification bit 5.2 Alarm Codes and Definitions When the MBDV drive experiences abnormal operation, it will enter an alarm state and display one of the following codes. Their definitions are included below for reference.
  • Page 56 MBDV Hardware Manual Alarm Alarm Code Description Drive status after alarm Type STO Active Warning Servo off Regeneration failed Fault Servo off Undervoltage warning Warning Does not change the current state Empty Q Program Warning Does not change the current state Motion command received while Warning Does not change the current state motor disabled...
  • Page 57: Commissioning

    MBDV Hardware Manual 6 Commissioning During trial operation, it is recommended that the motor be operated without a load coupled to its shaft. 6.1 Inspection before commissioning To protect the servo drive and servo motor, it is recommended that users inspect the following before commissioning these two components.
  • Page 58: Drive Configuration

    MBDV Hardware Manual 6.3 Drive Configuration In order to integrate the MBDV drive and motor into a system, it is necessary for users to configure  the drive so that its inputs, outputs, feedback and motor interact with the system in the desired way. The following are examples of things users can configure: 1. Control Mode 2. Assign functions to inputs and outputs 3. Tune PID loop parameters for improved motor control (if necessary) Connection method Install the setup software.
  • Page 59: Control Modes And Functions

    MBDV Hardware Manual 7 Control Modes and Functions 7.1 I/O signal setting Input and output signals can be assigned  pre-defined functions (e.g. CW/CCW limits, Fault  Output, In Position etc.), can be configured as general purpose and can have their logic state  configured according to application requirements. Parameters provided in this section's tables are  referencing the "Parameter Table" in the Luna configuration software. 7.1.1 Input Signal Configuration 7.1.1.1 Assignable input functions The functions and logic that can be assigned to the input signal are listed below. Setup value and corresponding input logic state Signal Functions Symbol Valid when closed...
  • Page 60: Output Signal Configuration

    MBDV Hardware Manual 7.1.2 Output signal configuration 7.1.2.1 Assignable output functions  The functions and logic assignable to outputs are list below: Logic and set value when output signal is valid Output when the Output when the Signal name Signal Symbol signal is valid signal is valid Closed Open Output when the...
  • Page 61: Servo Enable

    MBDV Hardware Manual 7.1.3 Servo Enable Enable/disable signal for energizing the motor windings. If the motor is enabled, the user may execute motion at the motor. If the motor is disabled, the user cannot execute motion at the motor. ◆ Signal logic Type Signal name Setup value...
  • Page 62: Cw, Ccw Limit

    CW-LMT When the input state is OPEN, the drive shows a Positive Limit alarm, Open motor cannot continue rotating in positive direction. ◆ Default settings for MBDV series drives Signal Setup Support Input PIN NO.
  • Page 63 MBDV Hardware Manual 1) Tuning Parameters Parameter Command Description Class Defaults Unit P0-05 1st position loop gain 0.1Hz P0-07 1st position loop derivative time constant P0-08 1st position loop derivative filter 20000 0.1Hz P0-11 1st velocity command gain 1st Gain Group 10000 0.01% P0-12 1st velocity loop gain 0.1Hz P0-13...
  • Page 64: Emergency Stop

    When E-STOP input is OPEN, the motor runs normally. Input E-STOP When E-STOP input is CLOSED, the motor runs normally. Open When E-STOP input is OPEN, the motor is emergency stopped. ◆ Default settings for MBDV series drives Signal Signal Input NO. PIN NO. Parameter...
  • Page 65: Fault Output

    Fault Servo off Motor collision alarm Fault Servo off circuit Encoer Safe torque off Fault Servo off Fault Servo off Communications error ◆ Default settings for MBDV series drives Signal Output Signal PIN NO. Parameter Command Setting Description Support mode name logic Closed The drive has a fault.
  • Page 66: Warning Output

    MBDV Hardware Manual 7.1.9 Warning output  When a warning occurs, the drive will have a warning output and the servo system maintains current working status. To use this function, a digital output of the servo drive is configured as WARN function.  Parameters P5-12 ~ P5-17 set the function of the digital output Y1 ~ Y2 of the drive. Type Signal name Setting...
  • Page 67: Motor Brake Control

    MBDV Hardware Manual 7.1.10 Motor brake control In order to maintain a fixed position when the drive power is OFF or the motor is disabled, a servo  motor with a brake needs to be used to ensure that the mechanical mechanism driven by the motor will not move due to its own weight or external force. When using a servo motor with a brake, one of the digital outputs of the servo drive must be configured for the BRK function.
  • Page 68: Servo Ready Output

    Output SON-ST When the servo is enabled, and the output state is OPEN. Open When the servo is NOT enabled, and the output state is Closed CLOSED. ◆ Default settings for MBDV series drives Signal Output Setup Signal Parameter Command...
  • Page 69: Dynamic Position Error Output

    MBDV Hardware Manual 7.1.13 Dynamic position error output The dynamic position error following output refers to the output of this signal when the difference  between the actual position of the motor and the command position is greater than P5-38 (Dynamic position error threshold) during the operation of the motor. Type Signal name Setup Value Signal Logic Function When the dynamic following error exceeds the setting of P5-38, the DYM- Closed...
  • Page 70: Software Limit Output

    MBDV Hardware Manual 7.1.14 Software limit output Software limit output refers to the output of this signal when the motor encounters or triggers the limit switch oin the current direction of motion, and the motor cannot continue to run in the current direction.
  • Page 71: Timing Diagram

    MBDV Hardware Manual 7.1.15 Timing diagram 7.1.15.1 Timing chart for turning on the power Note 1:When main power is cut off, it may take 1s or longer to stop outputting the Servo Ready  signal due to the capacitor in the drive. Note 2:If cut off main power input when the drive is enabled, possible alarms may occur as  following, under-voltage alarm (Warning), low-voltage alarm (Fault), position following error. Note 3:When main power is not applied, the Servo Ready will not output. There will be a low- voltage alarm if trying to enable the servo.
  • Page 72: Position Control Mode

    MBDV Hardware Manual 7.1.15.2 Timing chart when fault alarm occurs 7.2 Position control mode 7.2.1 Position control mode configuration In the position control mode, position control is performed by the position command input from the host controller. The following describes the basic settings for position control. ◆ Block diagram Rev.
  • Page 73 MBDV Hardware Manual ◆Position Control Mode Position mode is widely used in equipment that requires precise positioning. MBDV series supports command position mode. Set the following values to parameter P1-00 through the Luna software, and the servo drive will work in position control mode.
  • Page 74: Command Smoothing Filter Setting

    MBDV Hardware Manual 7.2.2 Command smoothing filter setting When the position command or speed command of the servo system changes significantly, it is  easy to cause the whole system to vibrate, and the system noise will also increase. Command filter  smooths the transition in position or speed caused by motion commands. This can reduce jitter and vibrations in the mechanical system. Related parameters Parameter Instruction Name Value range Defaults Unit Description Time constant for smoothing filtering in  P2-05 jerk time 0 ~ 125 internal trajectory mode...
  • Page 75: Positioning Complete Signal

    MBDV Hardware Manual 7.2.3 Positioning complete signal In the position control mode, use the positioning completion signal output to indicate the current positioning status of the servo motor. When the absolute value of the difference between the  commanded position and the actual position of the servo motor, that is, the position error is smaller than the set value of the parameter, the positioning completion signal will be output. Type Signal name Set value...
  • Page 76: Gain Parameter In Position Mode

    MBDV Hardware Manual ◆ Position arrival P-COIN judgment condition When the actual position is equal to the setting of parameter P5-46, the output position reaches the P-COIN signal. The fluctuation range is ± 100pulses. Actual Position (P5-46)+100pulses Parameters (P5-46) (P5-46)-100pulses Time Output Position Reached Output No Output No Output 7.2.5 Gain parameter in position mode In position mode, application appropriate gain parameters can make the servo system run...
  • Page 77: Velocity Control Mode

    T-LMT Torque Limit Output Torque limited output ◆ Come back to this subsection MBDV series servo drive command speed mode. Command speed mode: Use MOONS' unique Q programming to control the motor, or use Modbus commands to control the motor speed.
  • Page 78: Zero Speed Clamp Function

    MBDV Hardware Manual 7.3.2 Zero speed clamp function In velocity control mode, the zero speed clamp function can be configured in two ways: ◆ P5-51 (zero speed clamp function) set to 0 Activation of the zero speed clamp function becomes dependent on the ZCLAMP input signal. If the ZCLAMP input is valid and the commanded velocity falls below the zero speed threshold (P5-42), the servo motor enters a position lock state.
  • Page 79: Rotation Direction Switch

    MBDV Hardware Manual 7.3.3 Rotation direction switch In velocity control, direction of rotation can be selected via a digital input. When a digital input has been configured with the SPD-DIR function, the servo drive will use the magnitude of the  commanded velocity and determine direction of motion based on the logic state of the SPD-DIR input.
  • Page 80: Zero Speed Output

    MBDV Hardware Manual 7.3.4 Zero speed output When the absolute value of the actual speed of the motor is less than P5-42 (zero speed judgment threshold), and the duration reaches the set time of P5-40 , the servo drive outputs the zero-speed signal Z-SPD.
  • Page 81: Velocity Reached Output

    MBDV Hardware Manual 7.3.5 Velocity reached output In velocity control mode mode, when the absolute value of the actual motor speed exceeds P5-44 (Velocity Reached - Minimum threshold threshold), for the duration of time specified in P5-40 P5- 40, the velocity reached signal AT-SPD will be output. If the actual speed of the motor after filtering does not exceed P5-44, the velocity reached signal  AT-SPD will not be output. ◆ AT-SPD output signal configuration When using the velocity reached output AT-SPD, a digital output pin needs to be assigned this function.
  • Page 82: Velocity Consistent Output

    MBDV Hardware Manual 7.3.6 Velocity consistent output In velocity control mode, when the fluctuation of the actual velocity from the commanded velocity  is within the margins set by P5-43, for the duration of time specified by P5-40, then it is determined  that the actual speed of the motor is consistent with the commanded velocity and the velocity consistent signal, V-COIN, is output. If the actual velocity falls outside of P5-43, the speed consistent signal V-COIN will not be output. ◆...
  • Page 83: Velocity Control Mode Methods

    MBDV Hardware Manual 7.3.7 Velocity control Mode methods In velocity control mode, there are two control types: 1. Position over time 2. Speed control only (default setting) Related parameters Value Parameter Instruction Name Defaults Unit Describe range Set the control type in speed mode Velocity P1-03 1,2...
  • Page 84: Torque Control Mode

    MBDV Hardware Manual 7.4 Torque control mode 7.4.1 Commanded torque control Torque control mode is used for precise torque control. MBDV servo drives support command torque mode. Command torque mode uses communication commands to control the motor. P1-00(CM) Model Control signal Description definition Command torque...
  • Page 85: Speed Limit In Torque Mode

    MBDV Hardware Manual 7.4.3 Speed limit in torque mode It is recommended that users set the maximum speed of the motor prior to configuring the drive for  torque control mode. The motor will run at this maximum set speed when it is used in torque control mode which, depending on the application, could cause damage to the load if left at a high value. ◆...
  • Page 86: Output During Speed Limiting

    MBDV Hardware Manual 7.4.4 Output during speed limiting In torque control mode, when the maximum speed limit is reached, an output signal will be output notifying the user. The following are the parameters of this signal: Type Signal name Set value Signal logic Function The output speed of the motor is limited, the output signal, the output state is Closed...
  • Page 87: Torque Consistent Output

    MBDV Hardware Manual Related Parameters Value Parameter Instruction Name Defaults Unit Description range When operating in torque control, if P1-07 Target torque 0~3000 0.1% the absolute value of the actual torque Motion condition reaches the target torque threshold P5-40 0 ~ 30000 timer (P1-07), remains within the permissible fluctuation range (P5-45) for the amount ...
  • Page 88: Torque Limit

    MBDV Hardware Manual 7.5 Torque limit Torque limit is to limit the output torque of the servo motor. This function is applicable in all control modes, such as position, speed, torque, etc. ◆ method of torque limitation Parameter P1-10 defines 5 kinds of torque limit methods, each limit method is as follows. P1-10 Positive torque limit source Reverse torque limit source Torque limit method setting Register Y...
  • Page 89 MBDV Hardware Manual 7.5.1.2 Parameter based torque limits (same limit value for forward and reverse directions) When P1-10 = When 1, the forward and reverse torque limits are determined by parameter P1-06. Related parameters Value Parameter Instruction Name Defaults Unit Description range P1-06...
  • Page 90 MBDV Hardware Manual 7.5.1.4 Torque limiting via TQ-LMT input (same limit value for forward and reverse  directions) When P1-10 =3, the forward and reverse torque limit is determined by the logic state of the torque limit input TQ-LMT. ◆ Users will need to configure the logic of the TQ-LMIT input according to their application (normally open/ closed). However, when the primary TQ-LMT logic state is established (valid), forward and reverse torque limits are defined by P1-06. If the primary TQ-LMT logic state is not established (invalid), forward and reverse ...
  • Page 91: Torque Limit Reached Output

    MBDV Hardware Manual 7.5.2 Torque limit reached output Related parameters Type Signal name Set value Signal logic Function The torque limit is reached, the signal is output, the state of the output is Closed closed. The torque limit is not reached, the signal is not output, the state of the Open output is open.
  • Page 92: Pulse Frequency Division Output Mode Setting

    MBDV Hardware Manual 7.6.2 Pulse frequency division output mode setting When using the encoder feedback output function, its important that users configure the sequence  of output phases ( A-leads-B or B-leads-A), the polarity of the Z index output and the frequency division ratio (both numerator and denominator set individually). The frequency division ratio impacts the pulses per revolution output by the drive. Use parameter P3-12 to set the output pulse source, output pulse phase, and Z pulse output polarity type.
  • Page 93: Pulse Output Gear Ratio

    MBDV Hardware Manual 7.6.3 Pulse output gear ratio The number of pulses output from the MBDV drive per motor revolution can be configured by  parameters P3-13 and P3-14. P3-13 Pulse output gear ratio - numerator x 65535 Number of output pulses per revolution = P3-14 Pulse output gear ratio - denominator Note: The number of output pulses per revolution refers to the frequency multiplied by 4 of the A/B phase Related parameters Value...
  • Page 94: Dynamic Braking

    MBDV Hardware Manual 7.7 Dynamic braking Dynamic braking can be used when a fault occurs at the motor or at the drive.. Dynamic braking is implemented by short circuiting the U/V/W phases of the motor. This brings the motor to a stop at the highest deceleration rate and is meant to protect personnel and equipment.
  • Page 95: Dynamic Braking When Servo Off Signal Triggered

    MBDV Hardware Manual 7.7.1 Dynamic braking when Servo Off signal triggered Servo is OFF, the dynamic braking action is set by parameter P1-29, and the longest action time during deceleration is set by parameter P1-31, please refer to the table below. The deceleration process means that the actual speed of the motor decelerates from the speed of parameter P1-37 to within the zero-speed threshold of parameter P5-42, or the deceleration time reaches the set time of P1-31 when the dynamic braking takes effect.
  • Page 96 MBDV Hardware Manual There are three ways to enable homing: ◆ Digital input start (S-HOM) Type Signal name Set value Signal logic Function The S-HOM function is enabled on the rising edge of the signal and Closed starts to return to the origin Open S-HOM function is not enabled Input...
  • Page 97: Back To The Origin Basic Concept

    MBDV Hardware Manual 7.8.1 Back to the origin basic concept Back-to-origin is used to find the mechanical origin and locate the positional relationship between  the mechanical origin and the mechanical zero. Mechanical origin: a fixed position on the machine,  which can be a certain sensor or the Z - phase signal of the motor. Mechanical zero point: the absolute 0 position on the machine. After returning to the origin, the position where the motor stops are the machine origin. By setting the origin offset P2-27, the relationship between the machine origin and the machine zero can be set: Mechanical origin = mechanical zero + P2-27 When P2-27=0, the mechanical origin coincides with the mechanical zero.
  • Page 98 MBDV Hardware Manual 7.8.2.1 Return-to-origin method -4: forward return, look for forward mechanical hard limit Movement Track Offset Positive Mechanical Hard Limit a) Start the return at positive high speed, decelerate to stop when the mechanical hard limit meets the torque equal to the blocking force and the motor limit, run at the negative high speed by the distance of the origin offset P2-27, and the position of the motor is 0 after stop.
  • Page 99 MBDV Hardware Manual 7.8.2.4 Back-to-origin mode -1: Negative return, looking for negative mechanical hard limit  and Z -phase pulse signal Movement Track Offest Z-phase Signal Negative mechanical hard limit a) Start the return at a negative high speed, decelerate and stop when the mechanical hard limit meets the torque limit of the blocking force and the motor limit, run at a positive low speed, stop at the first Z pulse, and run at a positive high-speed origin offset the distance of P2-27, the position of ...
  • Page 100 MBDV Hardware Manual 7.8.2.6 Back-to-origin method 2: forward return, look for positive limit and Z pulse signal Movement Track Z-phase Signal Positive Limit Signal a) POT=0 when starting to return, start returning at high speed in positive direction, after encountering the rising edge of POT, decelerate, reverse, and run at low speed in negative direction.
  • Page 101 MBDV Hardware Manual 7.8.2.8 Return to origin mode 4: forward return, look for the rising edge of the origin sensor  and the Z pulse signal Movement Track Z-phase Signal Home Switch Signal a) When starting to return, HOM-SW=0, start the return at high speed in positive direction, after encountering the rising edge of HOM-SW, decelerate, reverse, and run at low speed in negative direction to the position where HOM-SW is invalid, then decelerate to stop, and then move forward again Run at low speed and stop at the first Z pulse after encountering the rising edge of HW.
  • Page 102 MBDV Hardware Manual 7.8.2.10 Return to origin mode 6: Negative return, look for the rising edge of the origin  sensor and the Z pulse signal Movement Track Z-phase Signal Home Switch Signal a) When starting to return, HOM-SW=0, start the return at high speed in negative direction, after encountering the rising edge of HOM-SW, decelerate, reverse, and run at low speed in the forward direction to the position where HOM-SW is invalid, then decelerate and stop, and then go negative again Run at low speed and stop at the first Z pulse after encountering the rising edge of HW.
  • Page 103 MBDV Hardware Manual 7.8.2.12 Return to origin mode 8: forward return, look for the rising edge of the origin sensor  and Z pulse signal, and automatically reverse when encountering the positive limit Movement Track Z-phase Signal Home Switch Signal Positive Limit Switch Signal a) When starting to return, HOM-SW=0 and it is located on the negative side of the origin sensor position, and starts to return at high speed in the positive direction. After encountering the rising edge of HOM-SW, decelerate, reverse, and run at low speed in the negative direction until the HOM-SW is invalid.
  • Page 104 MBDV Hardware Manual 7.8.2.13 Return-to-origin method 9: forward return, look for the rising edge of the origin  sensor and Z pulse signal, and automatically reverse when encountering the positive limit Movement Track Z-phase Signal Home Switch Signal Positive Limit Switch Signal a) When starting to return, HOM-SW=0 and it is located on the negative side of the position of the origin sensor, start the return at a positive high speed, and encounter a drop in HOM-SW Decelerate after the edge, reverse, and run at low speed in the negative direction, and stop at the first Z pulse after the rising edge of HOM-SW.
  • Page 105 MBDV Hardware Manual 7.8.2.14 Return to origin mode 10: Forward return, look for the falling edge of the origin  sensor and Z pulse signal, and automatically reverse when encountering the positive limit Movement Track Z-phase Signal Home Switch Signal Negative limit switch signal a) When starting to return, HOM-SW=0 and it is located on the negative side of the origin sensor position, start the return at a positive high speed, and encounter HOM-SW rising After the edge, decelerate, reverse, and run at a low speed in the negative direction to the position where HOM- SW is invalid, then decelerate to stop, and then run at a low speed in the positive direction.
  • Page 106 MBDV Hardware Manual 7.8.2.15 Return-to-origin method 11: Negative return, look for the falling edge of the origin  sensor and Z pulse signal, and automatically reverse in case of negative limit Movement Track Z-Phase Signal Home Switch Signal Negative Limit Switch Signal a) When starting to return, HOM-SW=0 and it is located on the positive side of the position of the origin sensor, and starts to return at a high speed in the negative direction. After encountering the rising edge of HOM-SW, Decelerate, reverse, and run at low speed in the forward direction, and stop at the first Z pulse after the falling edge of HOM-SW is encountered.
  • Page 107 MBDV Hardware Manual 7.8.2.16 Return-to-origin mode 12: Negative return, look for the rising edge of the origin  sensor and Z pulse signal, and automatically reverse the direction of the negative limit Movement Track Z-Phase Signal Home Switch Signal Negative Limit Switch Signal a) When starting to return, HOM-SW=0 and it is located on the positive side of the position of the origin sensor, and starts to return at a high speed in the negative direction. After encountering the rising edge of HOM-SW, Decelerate, reverse, and run at low speed in the forward direction to the position where HOM-SW is invalid, then decelerate to stop, and then run at low speed in the negative direction. After encountering the rising edge of HOM-SW the first Z pulse stops.
  • Page 108 MBDV Hardware Manual 7.8.2.17 Return to origin mode 13: Negative return, look for the rising edge of the origin  sensor and the Z pulse signal, and automatically reverse when the negative limit is  encountered Movement Track Z-Phase Signal Home Switch Signal Negative Limit Switch Signal a) When starting to return, HOM-SW=0 and it is located on the positive side of the position of the origin sensor, and it starts to return at a high speed in the negative direction. When it encounters the lower part of HOM-SW After the falling edge, decelerate, reverse, and run at low speed in the forward direction, and stop at the first Z pulse after the rising edge of HOM-SW.
  • Page 109 MBDV Hardware Manual 7.8.2.18 Return to origin mode 14: Negative return, look for the falling edge of the origin  sensor and Z pulse signal, and automatically reverse when encountering the negative limit Movement Track Z-Phase Signal Home Switch Signal Negative Limit Switch Signal a) When starting to return, HOM-SW=0 and it is located on the positive side of the position of the origin sensor. It starts to return at a high speed in the negative direction, and when the HOM- SW rises After the edge, decelerate, reverse, and run at low speed in the forward direction to the position where HOM -SW is invalid, then decelerate to stop, and then run at low speed in the negative direction.
  • Page 110 MBDV Hardware Manual 7.8.2.19 Return to origin mode 15, 16 reserved 7.8.2.20 Return to origin mode 17: Negative return, looking for negative limit signal Movement Track Negative Limit Switch Signal a) When starting the return, NOT=0, start the return at a high speed in the negative direction, after encountering the rising edge of NOT, decelerate, reverse, and run at a low speed in the forward direction.
  • Page 111 MBDV Hardware Manual 7.8.2.22 Return to origin mode 19: forward return, look for the origin sensor falling edge  signal Movement Track Home Switch Signal a) When starting to return, HOM-SW=0, start returning at high speed in positive direction, after encountering the rising edge of HOM-SW, decelerate, reverse, and run at low speed in negative direction, and stop after encountering the falling edge of HOM-SW.
  • Page 112 MBDV Hardware Manual 7.8.2.24 Return to origin mode 21: Negative return, look for the falling edge signal of the  origin sensor Movement Track Home Switch Signal a) When starting to return, HOM-SW=0, start the return at high speed in negative direction, after encountering the rising edge of HOM-SW, decelerate, reverse, and run at low speed in the forward direction, and stop after encountering the falling edge of HOM-SW.
  • Page 113 MBDV Hardware Manual 7.8.2.26 Return to origin mode 23: Forward return, look for the falling edge signal of the  origin sensor, and automatically reverse when encountering the positive limit Movement Track Home Switch Signal Positive limit switch signal a) When starting to return, HOM-SW=0 and it is located on the negative side of the origin sensor. Start returning at high speed in positive direction. After encountering the rising edge of HOM-SW, decelerate, reverse, and run at low speed in negative direction.
  • Page 114 MBDV Hardware Manual b) When starting to return, HOM -SW=0 and it is located on the positive side of the origin sensor, and starts to return at high speed in the positive direction. After encountering the rising edge of POT, decelerate, reverse, and run at high speed in the negative direction; Decelerate after falling edge, reverse and forward at low speed, encounter HOM- SW rises and stops.
  • Page 115 MBDV Hardware Manual 7.8.2.29 Return-to-origin mode 26: Forward return, look for the falling edge signal of the  origin sensor, and automatically reverse when encountering the positive limit Movement Track Home Switch Signal Positive limit switch signal a) When starting to return, HOM-SW=0 and it is located on the negative side of the origin sensor position, start the return at a positive high speed, and encounter the rising edge of HOM-SW After that, decelerate, reverse, and run at low speed in negative direction to the position where HOM- SW is invalid, then decelerate to stop, and then run at low speed in positive direction.
  • Page 116 MBDV Hardware Manual 7.8.2.30 Return to origin mode 27: Negative return, look for the falling edge signal of the  origin sensor, and automatically reverse when the negative limit is encountered. Movement Track Home Switch Signal Negative limit switch signal a) When starting to return, HOM-SW=0 and it is located on the positive side of the origin sensor, and starts to return at a high speed in the negative direction. After encountering the rising edge of HOM-SW, decelerate, reverse, and run at low speed in the forward direction.
  • Page 117 MBDV Hardware Manual 7.8.2.31 Return to origin mode 28: Negative return, look for the rising edge signal of the  origin sensor, and automatically reverse when the negative limit is encountered Movement Track Home Switch Signal Negative limit switch signal a) When starting to return, HOM-SW=0 and it is located on the positive side of the position of the origin sensor, start the return at a high speed in the negative direction, and encounter the rising edge of HOM-SW After that, decelerate, reverse, and run at low speed in the forward direction to the position where HOM -SW is invalid, then decelerate to stop, and then run at low speed in the negative direction.
  • Page 118 MBDV Hardware Manual 7.8.2.32 Return to origin mode 29: Negative return, look for the rising edge signal of the  origin sensor, and automatically reverse when encountering the negative limit Movement Track Home Switch Signal Negative limit switch signal a) When starting to return, HOM - SW=0 and it is located on the positive side of the origin sensor, and starts to return at a high speed in the negative direction. Stop after the rising edge of SW. b) When starting to return, HOM - SW =0 and it is located on the negative side of the origin sensor, and it starts to return at a high speed in the negative direction.
  • Page 119 MBDV Hardware Manual 7.8.2.33 Return to origin mode 30: Negative return, look for the falling edge signal of the  origin sensor, and automatically reverse when the negative limit is encountered. Movement Track Home Switch Signal Negative limit switch signal a) When starting to return, HOM-SW=0 and it is located on the positive side of the position of the origin sensor. It starts to return at a high speed in the negative direction, and when the HOM- SW rises After the edge, decelerate, reverse, and run at low speed in the forward direction to the position where HOM -SW is invalid, then decelerate to stop, and then run at low speed in the negative direction.
  • Page 120 MBDV Hardware Manual Back to origin mode 31, 32, 34, 35 ◆ Return to origin mode 31, 32 reserved ◆ Return to origin mode 33: Negative return, looking for the first Z pulse signal Movement Track Z-Phase Signal a) Start the return at a negative low speed and stop when the first Z pulse signal is encountered. ◆ Return to origin mode 34: forward return, look for the first Z pulse signal Movement Track Z-Phase Signal a) Start the return at a forward low speed and stop when the first Z pulse signal is encountered. ◆ Return to origin mode 35: Take the current position as the machine origin Offset Negative mechanical hard limit Mechanical Origin...
  • Page 121: Parameter Setting

    MBDV Hardware Manual 8 Parameter setting 8.1 Parameter classification MBDV series low voltage servo has 5 groups of parameters. Parameter group Type Function P0-XX PID Tuning Set the gain parameters of the servo Configure functions and set various functional parameters  P1-XX Drive Configuration of the drive P2-XX Motion Profile Configuration Configure motion profile parameters for each control mode.
  • Page 122 MBDV Hardware Manual Group P1-XX: Drive Configuration Serial number Function Defaults Range Unit Effective instruction Effective  P1-00 Control mode 1,15,21 immediately P1-02 Control Mode on power up 8 ~ 10,13 P1-03 Jog Mode 1 ~ 2 P1-05 Current command for Torque Control -3000 ~ 3000 0.1% P1-06...
  • Page 123 MBDV Hardware Manual P2-XX: Motion Profile Configuration Serial Function Defaults Range Unit Effective number command P2-00 Maximum velocity 0 ~ 100 P2-01 Maximum acceleration/deceleration 3000 0.167 ~ 5000 rps/s P2-02 Jog velocity -100 ~ 100 P2-03 Jog acceleration 0.167 ~ 5000 rps/s P2-04 Jog deceleration...
  • Page 124 MBDV Hardware Manual P5-XX Digital I/O Signal Settings Serial Function Defaults Range Unit Effective number command P5-00 Digital input 1 function 0 ~ 46 P5-01 Digital input 2 function 0 ~ 46 P5-02 Digital input 3 function 0 ~ 46 P5-03 Digital input 4 function 0 ~ 46 P5-12 Digital output 1 function...
  • Page 125: Parameter Description

    MBDV Hardware Manual 8.3 Parameter Description 8.3.1 Group P0-XX: PID gain setting Parameter Instruction Name Defaults Range Unit Related Patterns P0-00 Tuning Mode 0 ~ 2 Set the parameter tuning method. Set value Parameter setting mode Description note Set the gain value of servo system by In this mode, only modification of P0-03 is ...
  • Page 126 MBDV Hardware Manual Related Parameter Instruction Name Defaults Range Unit Patterns P0-05 1st position loop gain 0 ~ 20000 0.1Hz Set the proportional gain for position control. 0 means not used, 20000 means the proportional effect is maximized. Increasing this  parameter can improve the responsiveness of the system, reduce the position error, and shorten the positioning time. When the proportional gain of the position loop is too small, the system response will be delayed and position errors will decrease slowly.
  • Page 127 MBDV Hardware Manual Related Parameter Instruction Name Defaults Range Unit Patterns 1st speed loop integral time P0-13 0 ~ 30000 constant Set the integral time constant of the speed loop. 0 means no integral effect, the smaller the set value, the stronger the integral effect. This integral gain term is used to increase stiffness and reduce steady-state velocity errors Related Parameter Instruction Name Defaults Range Unit Patterns P0-14 Acceleration feedforward gain 3000...
  • Page 128 MBDV Hardware Manual Related Parameter Instruction Name Defaults Range Unit Patterns 2nd position loop differential time  P0-19 0 ~ 30000 constant ◆ Set the position loop differential time constant for position control. ◆ 0 means no derivative effect, the smaller the set value, the stronger the effect of the derivative term. When the set value of the  differential time constant (UD) is too large, the system's ability to suppress vibration is insufficient, and obvious oscillation will occur  during the acceleration / deceleration process, the uniform speed process and after the stop, Oscillations will decrease gradually and eventually stabilize.
  • Page 129 MBDV Hardware Manual Related Parameter Instruction Name Defaults Range Unit Patterns P0-24 1st command torque filter frequency 1099 0 ~ 40000 01Hz Filter the command torque. The filter is a single-output low-pass filter, which is used to low-pass filter the output of the PID controller (that is, the reference  current). System operation needs to be considered when setting this value. The smaller the value, the lower the filtering frequency and the more obvious the filtering effect. The default value of 1099 works for  most applications. This value can be modified in cases of motor vibrations or abnormal audible noise.  An example use case is when a system is prone to mechanical resonance. The low pass filter cutoff frequency can be set below the  resonance frequency of the system to prevent the motor control loop from exciting the system into its resonance frequency. In large inertia applications, increasing KP can help improve the system response but a KP value set too high can induce vibrations.
  • Page 130 MBDV Hardware Manual Related Parameter Instruction Name Defaults Range Unit Patterns Delay time - 2nd Group Gains to P0-37 0 ~ 10000 1st Group Gains Related Parameter Instruction Name Defaults Range Unit Patterns Delay time - 1st Group Gains to P0-38 0 ~ 10000 2nd Group Gains...
  • Page 131: Group P1-Xx: Configuration

    MBDV Hardware Manual 8.3.2 Group P1-XX: Configuration --- Configuration class parameters Related Parameter Instruction Name Defaults Range Unit Patterns P1-00 Control mode 1,15,21 Parameter P1-00 can be used to set the main control mode of the drive. Set value Mode Control signal Description Communication Use communication commands to control motor Torque Control command output torque...
  • Page 132 MBDV Hardware Manual Related Parameter Instruction Name Defaults Range Unit Patterns P1-08 Hard Stop Home Current Limit 0 ~ 3000 0.1% Sets the hard stop homing current limit. While hard stop homing, once the motor draws this current level, the motor drive determines that the mechanical limit of the system has been reached.
  • Page 133 MBDV Hardware Manual Parameter Instruction Name Defaults Range Unit P1-11 Rotation Direction 0,1 Set the relationship between the direction of the command and the rotation direction of the motor: Set value Direction of rotation Description When the commanded direction of motion is positive, the direction of rotation of the motor Clockwise rotation shaft is clockwise when viewed from the front...
  • Page 134 MBDV Hardware Manual Related Parameter Instruction Name Defaults Range Unit Patterns P1-16 RS-485 communication address 1 ~ 32 In Modbus/RTU communication mode, set the node address of the drive Related Parameter Instruction Name Defaults Range Unit Patterns CAN open communication node P1-17 1 ~ 127 address...
  • Page 135 MBDV Hardware Manual Related Parameter Instruction Name Defaults Range Unit Patterns P1-25 Second torque limit 3000 0 ~ 3000 0.1% Sets the second limit value of the motor output torque. Please refer to chapter 7.5 Torque limit Related Parameter Instruction Name Defaults Range...
  • Page 136 MBDV Hardware Manual Related Parameter Instruction Name Defaults Range Unit Patterns Dynamic brake The longest P1-31 movement during a deenabled 0 ~ 30000 deceleration Work time This parameter sets the longest action time of dynamic braking during deceleration when the servo is OFF. The deceleration process means that when the dynamic braking takes effect, the actual speed of the motor decelerates from the ...
  • Page 137 MBDV Hardware Manual Related Parameter Instruction Name Defaults Range Unit Patterns P1-34 Current Ramp Limit 1000 00 ~ 3000 0.1% The first speed value in multi-speed mode for multi-speed control, please refer to the chapter 7.2.13 multi-stage speed control mode Related Parameter Instruction Name Defaults Range Unit Patterns P1-37 Dynamic brake velocity 0 ~50 The maximum speed at which the dynamic brake can be activated. Related Parameter Instruction...
  • Page 138: P2-Xx: Trajectory

    MBDV Hardware Manual 8.3.3 P2-XX: Trajectory--- trajectory planning Related Parameter Instruction Name Defaults Range Unit Patterns P2-00 Maximum Velocity 0 ~ 100 Set the maximum running speed of the motor. When the actual speed of the motor exceeds the set value of P2-00, r12OV (motor stall alarm) will be generated. Related Parameter Instruction...
  • Page 139 MBDV Hardware Manual Related Parameter Instruction Name Defaults Range Unit Patterns P2-07 Target acceleration (point-to-point) 0.167 ~ 5000 rps/s Acceleration value in point-to-point command position mode. Related Parameter Instruction Name Defaults Range Unit Patterns P2-08 Target deceleration (point-to-point) 0.167 ~ 5000 rps/s Deceleration value in point-to-point command position mode.
  • Page 140 MBDV Hardware Manual Related Parameter Instruction Name Defaults Range Unit Patterns P2-28 Jerk filter 0 ~ 1000 Parameter P2-28 low-pass smoothing filter can take effect in the control mode used, such as: internal trajectory mode (position,  speed, torque), analog position, analog speed, analog torque, communication command control, etc. The smoothing effect of the low-pass filter on the input command is shown in the figure below. Motor Speed Target Speed Instruction Filtered Speed ◆ Low-pass smoothing filter will produce a certain delay T for  ×0.632 the instruction, but it will not affect the final positioning accuracy.
  • Page 141 MBDV Hardware Manual Related Parameter Instruction Name Defaults Range Unit Patterns P3-12 Encoder feedback output mode 0 ~ 256 Sets the output pulse source, output pulse phase, and Z pulse output polarity type. The functions corresponding to each bit are as follows.
  • Page 142 MBDV Hardware Manual Related Parameter Instruction Name Defaults Range Unit Patterns P3-13 Pulse output gear ratio - numerator 10000 0 ~ 13107200 Set the encoder frequency division output numerator Related Parameter Instruction Name Defaults Range Unit Patterns P3-14 Pulse output gear ratio - denominator 131072 0 ~ 13107200 Set the denominator of the encoder frequency division output.
  • Page 143: P3-Xx Group: Encoder & Step/Dir

    MBDV Hardware Manual 8.3.5 Group P5-XX: IO settings Related Parameter Instruction Name Defaults Range Unit Patterns P5-00 Digital input 1 function 0 ~ 46 Related Parameter Instruction Name Defaults Range Unit Patterns P5-01 Digital input 2 function 0 ~ 46 Related Parameter Instruction Name Defaults Range...
  • Page 144 MBDV Hardware Manual Related Parameter Instruction Name Defaults Range Unit Patterns P5-12 Digital output 1 function 0 ~ 34 Related Parameter Instruction Name Defaults Range Unit Patterns P5-13 Digital output 2 function 0 ~ 34 Parameters P5-12~P5-13 sequentially set the digital output port Y1~Y2 function. The following functions and logic states can be assigned to the inputs.
  • Page 145 MBDV Hardware Manual Related Parameter Instruction Name Defaults Range Unit Patterns P5-25 Motor disable delay time after brake applied 0 ~ 32000 The 5-25 parameter sets the delay time between the moment the brake is applied to the motor and the moment the motor is disabled.
  • Page 146 MBDV Hardware Manual Parameter Instruction Name Defaults Range Unit Related Patterns P5-38 Dynamic error threshold pulses 2147483647 Position mode, parameter P5-38 sets the judgment condition for dynamic position error overrun output. ◆ Dynamic position error overrun output judgment conditions: Dynamic position error refers to the output of this signal when the difference between the actual position of the motor and the  commanded position is greater than P5-38 during the operation of the motor.
  • Page 147 MBDV Hardware Manual Related Parameter Instruction Name Defaults Range Unit Patterns P5-42 Zero speed judgment threshold 0.1 ~ 2 P5-42 parameter is set to judge whether the motor has zero speed or not. When the absolute value of the actual speed of the motor is less than P5-42 (zero speed judgment threshold), the servo drive outputs the zero-speed signal Z-SPD.
  • Page 148 MBDV Hardware Manual Related Parameter Instruction Name Defaults Range Unit Patterns Torque Reached - Permissible P5-45 0 ~ 3000 0.1% fluctuation range When operating in torque control, if the absolute value of the actual torque reaches the target torque (P1-07), remains within the permissible fluctuation range (P5-45) for the amount of time specified by P5-40, the Torque Reached output signal (TQ-REACH) will ...
  • Page 149 MBDV Hardware Manual Related Parameter Instruction Name Defaults Range Unit Patterns P5-49 Homing method -4 ~ 40 Set the method of homing. For details on how to home, please refer to the chapter 7.8 Home Function Related Parameter Instruction Name Defaults Range Unit...
  • Page 150: Troubleshooting

    MBDV Hardware Manual 9 Troubleshooting 9.1 List of drive alarms When an alarm occurs in the driver, the LED digital display on the driver flashes to display the  alarm code. The alarm code is defined as follows: Display Description Type of alert Drive status after alarm Resettable content Drive over temperature alarm Fault Servo off Internal voltage alarm Fault Servo off Drive overvoltage alarm Fault Servo off Fault Servo off Overcurrent Fault...
  • Page 151 MBDV Hardware Manual Display Description Type of alert Drive status after alarm Resettable content Memory error Fault Servo off Motor overtemperature Fault Servo off Drive processor Fault Servo off overtemperature Motor stall Fault Servo off Homing parameters Warning Do not change the current state configuration error Motor Collision Alarm Fault...
  • Page 152: Driver Alarm Causes And Solutions

    MBDV Hardware Manual 9.2 Driver Alarm Causes and Solutions Display Description Alarm Causes Alarm Fixes Alarm Status content The temperature of the driver's heat 1. Reduce drive operating temperature and sink and power element exceeds the improve cooling conditions; specified value. 2.
  • Page 153 MBDV Hardware Manual Display Alarm Status Description Alarm Causes Alarm Fixes content DC bus voltage is too low. Input power has fallen below 18 VDC. Measuring input voltage 1. The power supply voltage is low 1. Increase the power supply voltage capacity Drive low causing a power failure.
  • Page 154 MBDV Hardware Manual Display Alarm Status Description Alarm Causes Alarm Fixes content The regeneration energy exceeds the regeneration absorption resistance can capacity. 1. The external regenerative discharge 1. Due to the large load inertia, resistance does not match, resulting in failure the generate energy, causing the to absorb regeneration potential;...
  • Page 155 MBDV Hardware Manual Display Alarm Status Description Alarm Causes Alarm Fixes content 1. Detect whether the temperature of the drive installation environment is too high 2. Reduce the ambient temperature of the drive and improve the cooling conditions Drive 3. The drive needs to be mounted on a metal processor backplane with good heat dissipation Drive processor temperature is too...
  • Page 156: Servo Gain Setting

    MBDV Hardware Manual 10 Servo gain setting Servo gain tuning is a function to optimize the response of the servo unit. The servo drive needs to operate the motor according to the commanded requirements with as little delay as possible. In order to match more closely the commanded motion, it might be necessary for users to adjust tuning parameters.
  • Page 157: Introduction To Parameter Tuning Mode

    MBDV Hardware Manual 10.1.2 Introduction to parameter tuning mode There are three Tuning Modes. The desired tuning mode is selected by parameter P0-00. See below for details. Parameter P0-00 Parameter tuning Modifiable Tuning  Introduce set value mode Parameters P0-03 1st mechanical When No Tuning is selected, the available parameters for stiffness level performance modification are limited. Users will only have ...
  • Page 158: Tuning Mode

    MBDV Hardware Manual 10.2 No-Tuning Mode " Tuning-free mode " is the default mode of the servo when it leaves the factory. The servo system is in a relatively stable state with low mechanical Stiffness. It can be powered on and run after  installation, which meets most application requirements. You can try to select the initial mechanical Stiffness that can make the servo system move  normally, and gradually adjust the mechanical Stiffness level to make the servo mechanical  Stiffness meet the application requirements. Tuning free mode Modify po-03 first Mechanical Stiffness Level*1 Whether performance End of setting...
  • Page 159: Auto Tuning Mode

    MBDV Hardware Manual 10.3 Auto tuning mode In "auto-tuning mode", the servo system will automatically identify the external load inertia ratio, automatically select the appropriate mechanical Stiffness level, and automatically optimize and  adjust the following contents: ● Gain (position loop, velocity loop) ● Filter (torque filter) During auto-tuning, the parameters in the table below will be changed  automatically. After the auto-tuning is completed, the parameters are automatically stored in the drive.
  • Page 160: Auto-Tuning Flowchart

    MBDV Hardware Manual 10.3.2 Auto-Tuning Flowchart  Users can perform automatic parameter tuning and debugging through Luna software or the operation panel on the driver. The flow chart of automatic tuning is as follows Auto Tunning There’s a host computer There is no host computer The host computer Use the software to plan plans the motion the trajectory and turn trajectory on auto-tuning...
  • Page 161: Start Auto-Tuning -- Software Operation On

    MBDV Hardware Manual 10.3.3 Start auto-tuning -- software operation on It is recommended that Luna software be used for automatic tuning mode. The steps are as follows. Step 1: Use the connection wizard ---- select the drive to be connected ---- click " Next " to establish communication with the drive Step 2: Set the control mode to position control Rev.
  • Page 162 MBDV Hardware Manual Step 3: Select the " Tuning " function in the left tree interface Step 4: In the debugging interface, set the parameter tuning mode to " Auto tuning " • First mechanical Stiffness grade: Set the appropriate first mechanical Stiffness level (P0-03), the general recommended value is  “5” when running for the first time • Load type According to the current load, select the corresponding load type Load type...
  • Page 163 MBDV Hardware Manual • Load inertia ratio If the current load inertia ratio is known, input it into " Load inertia ratio (P0-02) “, which can improve the system mechanical Stiffness and speed up the auto-tuning speed. If you do not know  the current load inertia ratio, you do not need to fill in, the system will automatically identify the load  inertia ratio. Motion control source custom trajectory planning: use the software's " custom trajectory •...
  • Page 164: Advanced Tuning Mode

    MBDV Hardware Manual • Complete automatic tuning After completion, the following dialog box will prompt. After confirming the upload, you can see that  the first mechanical Stiffness level and the load inertia ratio have been updated. • Error prompt If the Auto Tuning process cannot be comleted, the following error message box may be displayed, which means: Error code Cause Measure Increase the initial stiffness  Positioning time out. and the value of Setting Time.
  • Page 165: Parameters In Advanced Tuning Mode

    MBDV Hardware Manual 10.4.2 Parameters in Advanced Tuning Mode Parameter Command Function Type P0-01 load type P0-02 Load inertia ratio P0-03 1st mechanical stiffness level P0-04 2nd mechanical stiffness level P0-05 1st position loop gain First set of gains P0-07 1st position loop derivative time constant P0-08 1st position loop derivative filter P0-09 Velocity feedforward gain P0-10 Velocity feedforward filter frequency P0-11...
  • Page 166: Servo System Parameter Description

    MBDV Hardware Manual 10.4.3 Servo system parameter description The servo system is composed of current loop, speed loop and position loop. When you need to improve your response 1) Increase the mechanical Stiffness level 2) Increase the position loop gain 3) Increase the speed loop gain 4) Reduce the integral time parameter of the speed loop when the system has overshoot and vibrations 1) Reduce the mechanical Stiffness level...
  • Page 167: Gain Parameter Of Speed Loop

    MBDV Hardware Manual 10.4.4 Gain parameter of speed loop ◆ Speed loop gain Related Parameter Instruction Name Defaults Range Unit Patterns P0-12 1st velocity loop gain 0 ~ 30000 0.1Hz Set the parameters of the speed loop responsiveness. The larger the set value, the faster the speed loop response of the servo system, it is necessary to increase the speed loop gain value without causing system vibration.
  • Page 168: Resonance Suppression

    MBDV Hardware Manual 10.5 Resonance suppression The machanical system has an inherent resonance frequency. If the whole system runs at this mechanical resonance frequency poit, vibration and nosie may be caused. M3 series provide 4 methods to suppress mechanical resonance. 1)Torque Command Filter 2)Notch Filters 3)End Effector Suppress...
  • Page 169: Notch Filters

    MBDV Hardware Manual 10.5.2 Notch Filters Reducing the Torque Command Filter could solve the resonance, but it also reduce the system response bandwidth and phase margin, and thus the system becomes unstable. In some case, it may cause a counter-action that the resonance may not be suppressed. If you know the resonance frequency, the notch filter can be used to suppress the resonance. The notch filter suppresses mechanical resonance by reducing the gain at a specific frequency for ...
  • Page 170 MBDV Hardware Manual 10.5.2.1 Adaptive Notch Filter When the servo system resonates and needs to use the notch filter, it's recommended to use the Adaptive Notch Filter. ◆ Scope of application and precautions: • Applicable to all control mode except Torque Mode ◆ Conditions may affect nomal operation of the Adaptive Notch Filter: • The resonance frequency is lower than 3 times the Velocity Loop Gain •...
  • Page 171: Setting The Notch Filter Manually

    MBDV Hardware Manual Step 2: Change the method of " Resonance Suppression Filter 3 " to " Adaptive ", and then click to download Step 3: After the download is complete, the drive will automatically detect vibration and run immediately. 10.5.3 Setting the notch filter manually Analyze resonance frequencies To manually set the notch filter, it is necessary to measure the actual frequency when resonance ...
  • Page 172 MBDV Hardware Manual 10.5.3.1 Using Mechanical Open Loop Resonance Analysis Step 1 Before performing a mechanical open-loop analysis, ensure that ◆ The drive has passed the trial operation described in Section 6 Trial Operation. ◆ Servo system has completed parameter tuning ◆ Make sure the drive is not enabled Step 2 Select an appropriate amplitude to start the system, be aware that an excessively large amplitude may cause motion.may cause mechanical movement.
  • Page 173 MBDV Hardware Manual Step 3 Click the " Start Analysis " button, the servo system starts the mechanical open-loop analysis and displays the resulting curve. Click the icon in the upper right corner of the drawing area to optimize the display curve. Step 4 Move the reference line in the "...
  • Page 174 MBDV Hardware Manual The resonance suppression filter in the red area will display the resonance frequency of the current  reference line in real time. Click " Set as 1st Resonance Suppression Filter " or " Set as 2nd Resonance Suppression Filter " to set the resonance frequency to Resonance Suppression Filter 1 Or the resonance frequency point of the resonance suppression filter 2. Step 5 On the resonance suppression interface, select "...
  • Page 175 MBDV Hardware Manual The image below is the result viewed using the Velocity Closed Loop analysis. 10.5.3.2 Using the Velocity Closed Loop Mode to analyze resonance frequency Step 1 Before performing a velocity closed-loop analysis, make sure that • The drive has passed the trial operation described in Section 6 Trial Operation.Servo system has completed parameter tuning •...
  • Page 176 MBDV Hardware Manual Step 3 • Click the " Start Analysis " button, the servo system starts the speed closed-loop analysis, and the curve of the result is displayed. • Click the icon in the upper right corner of the graph area to optimize the display curve. •...
  • Page 177 MBDV Hardware Manual Step 4 To set a resonance suppression notch filter, select the "Anti-Resonance" option in the device  tree to the left of the Luna Software. On the desired filter, select "use" to enable the filter, set the  appropriate bandwidth frequency level and resonance depth level. Then click download. Step 5 The below waveforms showcase the results of velocity closed loop analysis Rev. 2.0 07/27/2023...
  • Page 178: End Vibration Suppression

    MBDV Hardware Manual 10.6 End Vibration Suppression Figure below, due to the long length of the end of the mechanical load, it is easy to generate low- frequency vibration during operation and stop. This vibration is often low in frequency, generally within 100Hz, but it will affect the positioning accuracy and settling time of the end.
  • Page 179: External Vibration Suppression

    MBDV Hardware Manual Step 2: Set and enable end vibration suppression Select the Anti-Resonance interface on Luna Software. Select the End Effector Suppression Tab,  enter teh vibration frequency as measured in Step 1. Note: ◆ Wrong vibration frequency will cause the end vibration suppression effect to become worse or  even increase the vibration ◆ Only the vibration frequency within 1-300Hz can be well suppressed ◆ This function may not work for vibrations due to reasons other than those related to reaching the mechanical end of a mechanism.
  • Page 180 MBDV Hardware Manual Appendix 1: LED display character comparison table Rev. 2.0 07/27/2023...
  • Page 181: Connect Us

    MBDV Hardware Manual 11 Connect us Customer Service Center +86-400-820-9661 MOONS’ Headquarter North America Company 168 Mingjia Road, Minhang District, Shanghai 201107, P.R. China MOONS' Industries (AMERICA), Inc. (Chicago) 1113 North Prospect Avenue, Itasca, IL 60143,USA MOONS’ Taicang MOONS’ INDUSTRIES (AMERICA), INC. (Boston) No.

Table of Contents