Page 14
Introduction This Handbook HP 15c Advanced Functions Handbook...
Page 15
Introduction The HP Community Note:...
Page 16
Contents The HP 15c: A Problem Solver Part I: HP 15c Fundamentals Section 1: Getting Started − Section 2: Numeric Functions Section 3: The Automatic Memory Stack, LAST X, and Data Storage...
Page 17
Contents Section 4: Statistics Functions Section 5: The Display and Continuous Memory...
Page 18
Contents Part II: HP 15c Programming Section 6: Programming Basics Section 7: Program Editing Section 8: Program Branching and Controls...
Page 19
Contents Section 9: Subroutines Section 10: The Index Register and Loop Control...
Page 20
Contents Part III: HP 15c Advanced Functions Section 11: Calculating With Complex Numbers Section 12: Calculating With Matrices...
Page 21
Contents AX B ̃ AX B Section 13: Finding the Roots of an Equation Section 14: Numerical Integration Appendix A: Error Conditions...
Page 22
Contents Appendix B: Stack Lift and the LAST X Register Appendix C: Memory Allocation Appendix D: A Detailed Look at _ Appendix E: A Detailed Look at f Appendix F: Batteries, Self-Tests, and Regulatory Information...
Page 23
Contents Appendix G: Differences Between the HP 15c CE and HP-15C Appendix H: Known Limitations Function Summary and Index Programming Summary and Index Subject Index The HP 15c Keyboard and Continuous Memory...
Page 24
The HP 15c: A Problem Solver A Quick Look at v − + - * ÷ ´...
Page 25
The HP 15c: A Problem Solver • ´ • Manual Solutions − To Compute: Keystrokes Display 9 v 6 - 3.0000 9 v 6 * 54.0000 9 v 6 ÷ 1.5000 9 v 6 y 531,441.0000 - * ÷...
Page 26
The HP 15c: A Problem Solver Example: Keystrokes Display 300.51 v 300.5100 601.0200 h / g 9.8 ÷ 61.3286 ¤ 7.8313 Programmed Solutions Writing the Program. Loading the Program.
Page 27
The HP 15c: A Problem Solver Keystrokes Display | ¥ 000- PRGM ´ CLEAR M 000- ´ b A 001-42,21,11 002- 003- 004- 005- 006- ÷ 007- ¤ 008- 009- 43 32 | ¥ 7.8313 PRGM Running the Program. Keystrokes Display 300.51...
Page 30
Section 1 Getting Started Power On and Off Keyboard Operation Primary and Alternate Functions ÷ ´ ´ _ | £ function itself the use of the key CLEAR CLEAR CLEAR Q ´ CLEAR M...
Page 31
Section 1: Getting Started ´ 0.0 0 0 0 Prefix Keys " • > i ´ < _ X ´ CLEAR u CLEAR u Changing Signs ” change sign ” Keying in Exponents “ enter exponent “ ” before ” “...
Page 33
Section 1: Getting Started Clearing Sequence Effect ´ CLEAR M ´ CLEAR Q ´ CLEAR u Display Clearing: and − clear X − back arrow if digit entry has not − been terminated − Keystrokes Display 12345 12,345 −...
Page 34
Section 1: Getting Started Calculations One-Number Functions after Keystrokes Display 1.6532 Two-Number Functions and v before + - * ÷ Terminating Digit Entry. keying in digit entry is terminated terminating digit entry Chain Calculations. sequential only after .
Page 40
Section 2: Numeric Functions Logarithmic Functions Natural Logarithm. Natural Antilogarithm. Common Logarithm. Common Antilogarithm. Keystrokes Display 3.8067 3.4012 ' 30.0001 12.4578 1.0954 3.1354 @ 1,365.8405 Hyperbolic Functions Pressing Calculates ´ P ´ P ´ P...
Page 41
Section 2: Numeric Functions Two-Number Functions keying in | ‘ ⁄ + - * ÷ The Power Function To Calculate Keystrokes Display 2 v 1.4 y 2.6390 2 v 1.4 ” y 0.3789 √ 2 ” v 3 y -8.0000 2 v 3 ⁄...
Page 42
Section 2: Numeric Functions Keystrokes Display 15.76 v 15.7600 0.4728 16.2328 Percent Difference. difference ∆ this Keystrokes Display 15.76 v 15.7600 Last less | ∆ 14.12 -10.4061 this Polar and Rectangular Coordinate Conversions θ θ Polar Conversion. polar θ ® X exchange Y θ...
Page 44
Section 3 The Automatic Memory Stack, LAST X, and Data Storage The Automatic Memory Stack and Stack Manipulation Wookashye'veech between before after The Automatic Memory Stack Registers 0.0000 0.0000 0.0000 0.0000 PRGM...
Page 45
Section 3: The Memory Stack, LAST X, and Data Storage x y z Stack Lift No Stack Lift or Drop √ x π Keys: ¤ Stack Drop x + y Keys: Stack Manipulation Functions...
Page 46
Section 3: The Memory Stack, LAST X, and Data Storage Keys: Keys: ) roll down roll up ® X exchange Y ) ® ® Keys: ®...
Page 47
Section 3: The Memory Stack, LAST X, and Data Storage The LAST X Register and before execution of a numeric operation LAST X Keys: LAST X: Keystrokes Display 287 v 287.0000 12.9 ÷ 22.2481 12.9000 ÷ ’,...
Page 48
Section 3: The Memory Stack, LAST X, and Data Storage Keystrokes Display 287.0000 13.9 ÷ 20.6475 Calculator Functions and the Stack enabled next Keys: ¤ disable next next if digit entry is terminated − −...
Page 49
Section 3: The Memory Stack, LAST X, and Data Storage Keys: Order of Entry and the v Key Keys:...
Page 50
Section 3: The Memory Stack, LAST X, and Data Storage Nested Calculations Keystrokes Display 6 v 7 + 13.0000 65.0000 69.0000 207.0000 Keys:...
Page 51
Section 3: The Memory Stack, LAST X, and Data Storage Keys: Keys: Arithmetic Calculations With Constants accumulating LAST X.
Page 52
Section 3: The Memory Stack, LAST X, and Data Storage Example: 9.5 15 Keys: 9.5 “ 15 LAST X: 4.1 16 4.1 16 9.5 15 4.1 16 9.5 15 Keys: LAST X: 9.5 15 9.5 15 9.5 15 4.1 16 4.1 16 9.5 15 8.3 16...
Page 53
Section 3: The Memory Stack, LAST X, and Data Storage Loading the Stack with a Constant. Keys: cumulative Example: Keystrokes Display 1.15 1.15 v v v 1.1500 1000 1,000...
Page 54
Section 3: The Memory Stack, LAST X, and Data Storage Keystrokes Display 1,150.0000 1,322.5000 1,520.8750 1,749.0063 Storage Register Operations therefore it is wisest to store data in the lowest-numbered registers available Storing and Recalling Numbers O store l recall copy X exchange exchanges the contents...
Page 55
Section 3: The Memory Stack, LAST X, and Data Storage Error 3 Example: Keystrokes Display 3 O 0 3.0000 3.0000 8.0000 Clearing Data Storage Registers clear registers ´ CLEAR Q Storage and Recall Arithmetic Storage Arithmetic + - * ÷...
Page 56
Section 3: The Memory Stack, LAST X, and Data Storage For storage arithmetic, r − x Keys: O - 0 Recall Arithmetic without lifting the stack For recall arithmetic, x − r Keys: l - 0...
Page 57
Section 3: The Memory Stack, LAST X, and Data Storage Example: Keystrokes Display 8 O 0 8.0000 4 O + 0 4.0000 3 O + 0 3.0000 24 l - 0 9.0000 15.0000 Overflow and Underflow − | " Problems 4 v 5.2 - 8.33 * 7.46 - 0.32 * ÷...
Page 58
Section 3: The Memory Stack, LAST X, and Data Storage v v v O ÷...
Page 59
Section 4 Statistics Functions Probability Calculations nonnegative integers Permutations ´ p arrangements Combinations sets x y x Examples Keystrokes Display 5 v 3 ´ p 60.0000...
Page 60
Section 4: Statistics Functions Keystrokes Display 52 v 4 270,725.0000 Random Number Generator random number ´ # ´ # ´ # The Art of Computer Programming, Vol. 2: Seminumerical Algorithms...
Page 63
Section 4: Statistics Functions Keystrokes Display ´ CLEAR ∑ 0.0000 ´ • 0.00 4.63 v 4.63 1.00 4.78 v 4.78 20 z 2.00 6.61 v 6.61 40 z 3.00 7.21 v 7.21 60 z 4.00 7.78 v 7.78 80 z 5.00 200.00 12.000.00...
Page 64
Section 4: Statistics Functions Correcting Accumulated Statistics both incorrect | K | w Example Keystrokes Display 4.78 v 4.78 4.00 5.78 v 5.78 20 z 5.00...
Page 65
Section 4: Statistics Functions Mean ’ | ’ ® Example: Keystrokes Display | ’ 40.00 ® 6.40 Standard Deviation standard deviation sample ®...
Page 66
Section 4: Statistics Functions Example: Keystrokes Display 31.62 ® 1.24 Linear Regression ´ L ´ L ® ’ Keys: ´ L ®...
Page 67
Section 4: Statistics Functions Example: Keystrokes Display ´ L 4.86 ® 0.04 Linear Estimation and Correlation Coefficient linear estimate ŷ ´ j correlation coefficient r ®...
Page 69
Section 4: Statistics Functions Keystrokes Display ´ j 7.56 ® 0.99 Other Applications Interpolation. Vector Arithmetic. θ v r π π π either z or...
Page 70
Section 5 The Display and Continuous Memory Display Control • i ´ • 123,456.0000 ´ i 1.2346 ´ ^ 123.46 Fixed Decimal Display fixed decimal • • ´ • Keystrokes Display 123.4567895 123.4567895 ´ • 123.4568 ´ • 123.456790 ´ • •...
Page 71
Section 5: The Display and Continuous Memory ´ i undisplayed Keystrokes Display ´ i 1.234568 ´ i 1.234567 Engineering Notation Display engineering ´ ^ additional Keystrokes Display .012345 0.012345 ´ ^ ´ ^ 12.35 10 * 123.5 ´ • •...
Page 72
Section 5: The Display and Continuous Memory Mantissa Display π ´ CLEAR u Keystrokes Display 3.1416 ´ CLEAR u 3141592654 Round-Off Error π HP 15c Advanced Functions Handbook Special Displays Annunciators ✱ USER GRAD PRGM...
Page 73
Section 5: The Display and Continuous Memory Digit Separators Keystrokes Display 12345.67 12,345.67 12.345,6700 12,345.6700 Error Display Error Error Overflow and Underflow Overflow − = | " Underflow...
Page 78
Section 6 Programming Basics The Mechanics Creating a Program Loading a Program Program Mode program/run | ¥ Program mode PRGM Keystrokes Display | ¥ 000- PRGM...
Page 79
Section 6: Programming Basics Location in Program Memory t ” In Run mode ´ CLEAR M ´ in Program mode CLEAR M Program Begin label ´ b Keystrokes Display ´ CLEAR M 000- ´ b A 001-42,21,11 Recording a Program nonprogrammable functions...
Page 81
Section 6: Programming Basics Keystrokes Display | ¥ PRGM Executing a Program. In Run mode letter label G digit ´ label running Keystrokes Display 300.51 300.51 ´ A 7.8313 Restarting a Program. ¦ ¦ User Mode letter-named ´ U ´ ´...
Page 82
Section 6: Programming Basics ´ A ® Direct entry ¦ run/stop ¦ Program Memory Most Example...
Page 83
Section 6: Programming Basics πr πr h πr πrh Radius, r Height, h Base Area Volume Surface Area TOTALS πr πr h provide for Keystrokes Display | ¥ 000- PRGM ´ CLEAR M 000-...
Page 88
Section 6: Programming Basics Initial Memory Configuration COMMON STORAGE REGISTERS: R to R REGISTERS: to R Permanent Registers Statistics Registers Movable Boundary Allocatable Registers (shaded) Keystrokes Display ´ m % 60.0000 after ´...
Page 89
Section 6: Programming Basics Keystrokes Display ´ m % 1.0000 ´ m % 19.0000 19.0000 memory status given the above memory configuration Error 3 Error 4 Error 10 Program Boundaries End. ¦ automatic Labels. ´ label label...
Page 90
Section 6: Programming Basics 000- ´ b A ´ A ´ b ¦ Unexpected Program Stops Pressing Any Key. Error Stops. Error Error − = | " Abbreviated Key Sequences ´ abbreviated key sequence ´...
Page 91
Section 6: Programming Basics ´ b ´ A ´ b A ´ m ´ % ´ m % ´ # ´ ´ ´ User Mode ´ U ´ USER ´ ¤ ⁄ ´ U Polynomial Expressions and Horner’s Method Dx E Dx E Cx D x E Bx C x D x E...
Page 92
Section 6: Programming Basics Example: x x x Keystrokes Display | ¥ 000- ´ b B 001-42,21,12 002- 003- 004- 005- 006- 007- 008- 009- 43 32 | ¥ 7 v v 7.0000 ´ B 12,691.0000 Nonprogrammable Functions cannot ´ CLEAR u | ‚...
Page 93
Section 6: Programming Basics Problems | ¥ ´ b C 3.2 ÷ 20 * ” 138 + | n | ¥ L v r v r ´ b Á .94 v ¦ v ¦ ÷ ∆ | n...
Page 95
Section 7: Program Editing The Back Step Instruction. backwards ‚ back step ‚ ‚ Deleting Program Lines − back arrow in Program mode − − Inserting Program Lines preceding following Examples Deletions: Changes: ¦...
Page 98
Section 7: Program Editing Keystrokes Display | ¥ ´ CLEAR Q 8 O 1 8.0000 Â 001-42,21,11 2.5000 Â 002- 2.5000 Â 003- 43 11 6.2500 Â 004- 43 26 3.1416 Â 005- 19.6350 Wrapping. Â Â Line Position...
Page 99
Section 7: Program Editing Insertions and Deletions Error 4 Initializing Calculator Status ´ CLEAR ∑ ´ CLEAR M ´ CLEAR Q | D | R | g | F | " Problems...
Page 101
Section 7: Program Editing θ in radians s r θ θ Keystrokes Display | ¥ 000- ´ b A 001-42,21,11 002- 43 7 ´ • 003-42, 7, 4 004- 44 0 005- 006- θ ® 007- θ 008- 44 1 009- θ...
Page 102
Section 8 Program Branching and Controls other than Branching simple condition looping The Mechanics Branching The Go To (t) Instruction. t label number 015-t 7 016- 017- 018- 019-´ b 020- Looping.
Page 103
Section 8: Program Branching and Controls ¦ 015-´ b 016- 017- 018- 019-t 7 020- Conditional Tests conditional test | £ Test Test...
Page 104
Section 8: Program Branching and Controls skips one instruction if the condition is false conditional branch Program Execution After Test If True If False 015-´ b 016- 017-| £ 018-t .1 019- 020- Flags flag clear user system set flag clear flag | "...
Page 107
Section 8: Program Branching and Controls Example: Flags periodic periodic...
Page 108
Section 8: Program Branching and Controls Keystrokes Display | ¥ 000- ´ b B 001-42,21,12 | " 002-43, 5, 0 003- ´ b E 004-42,21,15 005-43, 4, 0 ´ b 006-42,21, 1 007- 008- 009- ® 010- ” 011- 012- ”...
Page 109
Section 8: Program Branching and Controls Keystrokes Display | ¥ 250 v 250.0000 48 v 48.0000 .005 0.005 ´ B 10,698.3049 ´ E 10,645.0795 Further Information Go To t ” nnn t label number program label ´ b label t label number...
Page 110
Section 8: Program Branching and Controls Looping Conditional Branching Tests. £ ® ) Tests With Complex Numbers and Matrix Descriptors. Flags...
Page 111
Section 8: Program Branching and Controls Keystrokes Display | ¥ 000- ´ b C 001-42,21,13 | " 002-43, 5, 7 003- 22 1 ´ b Á 004-42,21,14 005-43, 4, 7 ´ b 006-42,21, 1 007-43, 6, 7 008- 22 2 009- 010- 011-...
Page 112
Section 8: Program Branching and Controls Flag 9. | " −...
Page 113
Section 9 Subroutines The Mechanics Go To Subroutine and Return G go to subroutine pending return G label t label until the first subsequent instruction is encountered transfers back Subroutine Execution ´ b A ´ b G . 1 after G . 1 letter ´...
Page 114
Section 9: Subroutines Subroutine Limits Main Program Examples Example:...
Page 115
Section 9: Subroutines MAIN PROGRAM | ¥ ´ CLEAR M 000- 001- ´ b 002- 003- O 0 004- ® 005- O - 0 006- G .3 007- ” 008- ® 009- G .3 010- + 011- l ÷ 0 y / x 012- SUBROUTINE...
Page 116
Section 9: Subroutines Example: Nesting. another t z y Keystrokes ´ b G .5 G .5 G .5 ¤ ´ b ® G .4...
Page 117
Section 9: Subroutines Further Information The Subroutine Return pending return G rather than after Nested Subroutines Error 5 sets...
Page 118
Section 10 The Index Register and Loop Control numbers Keys Direct Versus Indirect Data Storage With the Index Register number itself indirect addressing...
Page 119
Section 10: The Index Register and Loop Control Indirect Program Control With the Index Register other than Program Loop Control by any storage register indirectly The Mechanics ´ Index Register Storage and Recall Direct. O Indirect. O Indirect Addressing or G If R contains: will address:...
Page 120
Section 10: The Index Register and Loop Control Indirect Addressing or G If R contains: will address: will transfer to: ´ b B ´ b C ´ b Á ⋮ ⋮ ´ b E — — Index Register Arithmetic Direct. O l + - * ÷...
Page 121
Section 10: The Index Register and Loop Control To Labels. positive t label ´ b A To Line numbers. negative t line number Indirect Flag Control With " Indirect Display Format Control With ´ • V ´ i V ´ ^ V Loop Control With Counters: increment and skip if greater than decrement and...
Page 122
Section 10: The Index Register and Loop Control nnnnn x x x y y 0.0 5 0 0 2 Operation. nnnnn nnnnn xxx, nnnnn nnnnn ≤ > False (nnnnn True (nnnnn xxx) xxx) instruction ´ I V instruction nnnnn.xxxyy nnnnn nnnnn nnnnn xxx nnnnn...
Page 123
Section 10: The Index Register and Loop Control > ≤ False (nnnnn True (nnnnn xxx) xxx) instruction ´ s V instruction nnnnn.xxxyy nnnnn nnnnn xxx, nnnnn xxx nnnnn Iterations Operation 0.00602 2.00602 4.00602 6.00602 8.00602 6.00002 4.00002 2.00002 0.00002 Examples Examples: Register Operations Storing and Recalling Keystrokes...
Page 124
Section 10: The Index Register and Loop Control Keystrokes Display 2.6458 ´ X 2.6458 Exchanging the X-Register Keystrokes Display ´ X V 12.3456 2.6458 ´ X % 0.0000 2.6458 ´ X 2.6458 Storage Register Arithmetic Keystrokes Display 10 O + 10.0000 12.6458 O ÷...
Page 125
Section 10: The Index Register and Loop Control 3.0 0 0 0 1. Keystrokes Display | ¥ 000- t ” 013 013-43,30, 9 − − 011- 42 31 ´ e 012-42, 5, 2 013- 22 25 Keystrokes Display | ¥ 2 O 0 2.00000 100 O 1...
Page 126
Section 10: The Index Register and Loop Control Keystrokes Display ´ A 2.0000 84.0896 5.0000 64.8420 8.0000 50.0000 50.0000 Example: Display Format Control • Keystrokes Display |¥ 000- ´ CLEAR M 000- ´ b B 001-42,21,12 9 nnnnn 002- 003- 44 25 ´...
Page 128
Section 10: The Index Register and Loop Control nnnnn.xxxyy nnnnn nnnnn xxx, yy cannot be zero 00 the value for yy defaults to 1 nnnnn Indirect Display Control • • will...
Page 129
Section 10: The Index Register and Loop Control...
Page 132
Section 11 Calculating With Complex Numbers a ib The Complex Stack and Complex Mode real imaginary LAST X Creating the Complex Stack...
Page 133
Section 11: Calculating With Complex Numbers ´ V ´ } the number appearing in the display is the number in the real X-register Note: radians The trigonometric mode annunciator in the display RAD GRAD or blank for Degrees applies to two functions only Deactivating Complex Mode | "...
Page 134
Section 11: Calculating With Complex Numbers Example: Keystrokes Display ´ • 2.0000 ´ V 2.0000 4.0000 ´ V 4.0000 6.0000 ´ % 8.0000 6.0000 ´ V...
Section 11: Calculating With Complex Numbers Keys: ´ V ´ V both Keys: Keys: ´ V − −...
Page 136
Section 11: Calculating With Complex Numbers Stack Lift in Complex Mode The same functions that enable disable or are neutral to lifting of the real stack will enable disable or be neutral to lifting of the imaginary stack every non-neutral function except − and causes the clearing of the imaginary X-register when the next number is entered when the next number is keyed in or recalled...
Page 137
Section 11: Calculating With Complex Numbers ” ´ ” ´ } real part only ” imaginary part ´ } ” ´ } only Clearing a Complex Number − Clearing the Real X-Register. − Example: ´ } ´ % −1 −8 Keys:...
Page 140
Section 11: Calculating With Complex Numbers 17 144 Keys: − Entering a Real Number − − 17 144 17 144 17 144 Keys:...
Page 141
Section 11: Calculating With Complex Numbers Entering a Pure Imaginary Number ´ } Example: − Keystrokes Display ´ } 0.0000 Z 17 144 17 144 17 144 Keys: ´ }...
Page 142
Storing and Recalling Complex Numbers real X-register only a ib ´ } ´ } l 1 l 2 ´ V ´ } − l 1 − Operations With Complex Numbers real numbers assuming the result is also real HP 15c Advanced Functions Handbook...
Page 143
Section 11: Calculating With Complex Numbers One-Number Functions ¤ x N o ⁄ @ ' radians Two-Number Functions + - * ÷ y Stack Manipulation Functions both ® ® ) HP 15c Advanced Functions Handbook...
Page 144
Section 11: Calculating With Complex Numbers Conditional Tests complex complex 5 x y 6 x y Example: Complex Arithmetic. Keystrokes Display 1.2 v 4.7 ´ V 1.2000 2.7 v 3.2 ´ V 2.7000 ÷ 1.0428 ¤ 1.0491 ´ % 0.2406 1.0491...
Page 145
Section 11: Calculating With Complex Numbers Complex Results from Real Numbers √ real Error 0 and without disturbing the stack contents Example: Error 0 Keystrokes Display 1.5708 ´ % -1.5239 1.5708 Polar and Rectangular Coordinate Conversions rectangular twice ´ } ´...
Page 146
Section 11: Calculating With Complex Numbers i θ θ i θ a ib r∠θ in Complex mode ´ ; θ θ Re Im Re Im θ These are the only functions in Complex mode that are affected by the current trigonometric mode setting θ...
Page 147
Section 11: Calculating With Complex Numbers ∠ Example: ∠ Keystrokes Display 2.0000 ´ V 2.0000 ´ ; 0.8452 3.0000 ´ V 3.0000 ´ ; 2.2981 3.1434 4.8863 θ ´ % 49.9612 4.8863 Problems √ i √ i...
Page 148
Section 11: Calculating With Complex Numbers Keystrokes Display ´ } 0.0000 8 ” v -8.0000 ´ V -8.0000 352.0000 -1.872.0000 4.0000 √ 5 ¤ 2.2361 √ i 2 ” * -4.4721 ´ V 4.0000 ÷ -295.4551 √ i 2 v 5 ¤ 2.2361 √...
Page 149
Section 11: Calculating With Complex Numbers For Further Information HP 15c Advanced Functions Handbook ...
Page 150
Section 12 Calculating With Matrices AX B...
Page 151
Section 12: Calculating with Matrices Keystrokes Display | " ´ m A 2.0000 ´ > 2.0000 ´ U USER 2.0000 3.8 O 3.8000 7.2 O 7.2000 1.3 O 1.3000 .9 ” O -0.9000 2 v 1 ´ m B 1.0000 16.5 O 16.5000 22.1 ”...
Page 152
Section 12: Calculating with Matrices Keystrokes Display > B > A ÷ running Keystrokes Display -11.2887 8.2496 ´ U 8.2496 ´ > 8.2496 Note: Matrix Dimensions...
Page 153
Section 12: Calculating with Matrices Dimensioning a Matrix ´ number of rows number of columns ´ m representations ´...
Page 154
Section 12: Calculating with Matrices Example: Keystrokes Display 2.0000 ´ m A 3.0000 Displaying Matrix Dimensions > Keystrokes Display > B 3.0000 ® 2.0000 Changing Matrix Dimensions...
Page 155
Section 12: Calculating with Matrices ´ > ´ m A Storing and Recalling Matrix Elements Storing and Recalling All Elements in Order number automatically column number ´ >...
Page 156
Section 12: Calculating with Matrices ´ > ´ U null Example:...
Page 157
Section 12: Calculating with Matrices Keystrokes Display ´ > ´ U 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 ´ U 6.0000 Checking and Changing Matrix Elements Individually...
Page 158
Section 12: Calculating with Matrices Using R and R Example: Keystrokes Display 2 O 0 2.0000 3 O 1 3.0000 9.0000 Using the Stack. ...
Page 159
Section 12: Calculating with Matrices Example: Keystrokes Display 2 v 1 4.0000 Storing a Number in All Elements of a Matrix > Matrix Operations descriptor result matrix running Matrix Descriptors > descriptor current...
Page 160
Section 12: Calculating with Matrices The Result Matrix result matrix ´ < < < maximum HP 15c Advanced Functions Handbook automatically...
Page 161
Section 12: Calculating with Matrices null Copying a Matrix > > > Example Keystrokes Display > A > B > B One-Matrix Operations...
Page 162
Sign Change, Inverse, Transpose, Norms, Determinant Effect on Matrix Result in Effect on Keystroke(s) Specified in X-register Result Matrix X-register ” ⁄ ´ ⁄ ´ > ´ > ´ > ´ > singular matrix ⁄ HP 15c Advanced Functions Handbook...
Page 163
Section 12: Calculating with Matrices Example: Keystrokes Display > B ´ > Scalar Operations ÷...
Page 164
Section 12: Calculating with Matrices Elements of Result Matrix Operation Matrix in Y-Register Scalar in Y-Register Scalar in X-Register Matrix in X-Register ÷ Example: B 2A, Keystrokes Display ´ < B > A...
Page 165
Section 12: Calculating with Matrices Keystrokes Display Arithmetic Operations Pressing Calculates Example: C B A Keystrokes Display ´ < C > B > A...
Page 166
Section 12: Calculating with Matrices Keystrokes Display Matrix Multiplication Pressing Calculates ´ > ÷ ÷ Note: ÷ > > a b b / a...
Page 167
Section 12: Calculating with Matrices ÷ ÷ ⁄ Example: Keystrokes Display > A > B ´ < C ´ >...
Page 168
Section 12: Calculating with Matrices Solving the Equation AX = B ÷ AX B constant matrix coefficient matrix ÷ X A B ÷ ÷ ⁄ Example: singular...
Page 169
Section 12: Calculating with Matrices Week Total Weight (kg) Total Value Solution: AD B Keystrokes Display ´ m A 2.0000 ´ > 2.0000 ´ U 2.0000 1.0000 1.0000 .24 O 0.2400 .86 O 0.8600 2 v 3 ´ m B 3.0000...
Page 170
Section 12: Calculating with Matrices Keystrokes Display 274 O 274.0000 233 O 233.0000 331 O 331.0000 120.32 O 120.3200 112.96 O 112.9600 151.36 O 151.3600 ´ < Á 151.3600 > B > A ÷ Á 186.0000 Á 141.0000 Á 215.0000 Á...
Page 171
Section 12: Calculating with Matrices Week Cabbage (kg) Broccoli (kg) Calculating the Residual R YX AX B B AC HP 15c Advanced Functions Handbook > > ´ >...
Page 172
Section 12: Calculating with Matrices Using Matrices in LU Form AX B ⁄ ÷ > AX B without Calculations With Complex Matrices...
Page 173
Section 12: Calculating with Matrices You don’t need to activate Complex mode for calculations with complex matrices HP 15c Advanced Functions Handbook Storing the Elements of a Complex Matrix Z X iY...
Page 174
Section 12: Calculating with Matrices ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ y ⎦ initially Pressing Transforms Into ´ p...
Page 175
Section 12: Calculating with Matrices Example: Keystrokes Display ´ > 2 v 4 ´ m A 4.0000 ´ > 4.0000 ´ U 4.0000 4.0000 3.0000 7.0000 2 ” O -2.0000 1.0000 5.0000 3.0000 8.0000 ´ U 8 0000 > A ´...
Page 176
Section 12: Calculating with Matrices ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ The Complex Transformations Between Z and Z̃ Z̃ Z̃ > Z̃ Z̃ Z̃ Pressing Transforms Into Z̃ ´ > Z̃ ´ > Z̃...
Page 177
Section 12: Calculating with Matrices Inverting a Complex Matrix Z̃ ´ p Z̃ ´ > Z̃ Z̃ ⁄ ´ > Example: ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ Keystrokes Display > A Z̃ ´ >...
Page 178
Section 12: Calculating with Matrices Keystrokes Display ´ < B Z̃ ⁄ ´ > ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ Multiplying Complex Matrices Ỹ X ´ p Ỹ ´ > ´ p...
Page 179
Section 12: Calculating with Matrices Ỹ X X̃ Example: Z̃ Keystrokes Display > A > B ´ < C Z̃ Z ´ U 1.0000 -2.8500 -4.0000 1.0000 1.0000 3.8000 1.0000 -1.0500 ´ U -1.0500...
Page 180
Section 12: Calculating with Matrices ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ Solving the Complex Equation AX = B AX B X A B Ã B AX B ´ p ´ p...
Page 182
Section 12: Calculating with Matrices ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ Keystrokes Display 4 v 2 ´ m A 2.0000 ´ > 2.0000 ´ U 2.0000 10 O 10.0000 0.0000 0.0000 0.0000 200 O...
Page 183
Section 12: Calculating with Matrices Keystrokes Display à ´ > ´ < C ÷ 0.0372 0.1311 0.0437 0.1543 ´ U 0.1543 ´ > 0.1543 AX B 33 64 00-0...
Page 184
Section 12: Calculating with Matrices ´ p à ´ > < à ⁄ ´ p ´ > ´ > ´ > < ´ > HP 15c Advanced Functions Handbook...
Page 185
Section 12: Calculating with Matrices Miscellaneous Operations Involving Matrices Using a Matrix Element With Register Operations O + - * ÷ l + - * ÷ Using Matrix Descriptors in the Index Register ´ m V...
Page 186
Section 12: Calculating with Matrices Conditional Tests on Matrix Descriptors 5 x y 6 x y between the descriptors themselves not between the elements Stack Operation for Matrix Calculations...
Page 187
Section 12: Calculating with Matrices 6.0000 6.0000 5.0000 5.0000 4.0000 4.0000 matrix A result mat. Keys: ⁄ LAST X: matrix A 5.0000 5.0000 4.0000 5.0000 matrix B 4.0000 matrix A result mat. Keys: LAST X: matrix A > > > >...
Page 188
Section 12: Calculating with Matrices 4.0000 4.0000 value 4.0000 row number 4.0000 col. number value Keys: 5.0000 5.0000 4.0000 5.0000 row number 4.0000 col. number value Keys: Using Matrix Operations in a Program USER...
Page 189
Section 12: Calculating with Matrices ´ > ´ b Á “User” O Á > > Summary of Matrix Functions Keystroke(s) Results ” ´ m A ´ > ´ > Z̃ ´ > Z̃ ´ > ´ >...
Page 191
Section 12: Calculating with Matrices Keystroke(s) Results < ´ U ⁄ ´ ⁄ ÷ For Further Information HP 15c Advanced Functions Handbook...
Page 192
Section 13 Finding the Roots of an Equation root zero real roots real roots Using that you write f x − a HP 15c Advanced Functions Handbook...
Page 193
Section 13: Finding the Roots of an Equation ´ b label ´ _ Example: Keystrokes Display | ¥ 000- ´ CLEAR M 000-...
Page 194
Section 13: Finding the Roots of an Equation Keystrokes Display ´ b 001-42,21, 0 002- 003- 004- 005- 006- 007- 008- 43 32 Keystrokes Display | ¥ 0.0000 ´ _ ´ _ running ´ • algorithm iterative...
Page 195
Section 13: Finding the Roots of an Equation Keystrokes Display ´ _ 5.0000 Keystrokes Display 5.0000 0.0000 Keystrokes Display 0.0000 10 ” ´ _ -2.0000 -2.0000 0.0000...
Page 196
Section 13: Finding the Roots of an Equation could Graph of f (x) Example: Solution: Keystrokes Display | ¥ 000- ´ b A 001-42,21,11 002- 003- ÷ 004-...
Page 198
Section 13: Finding the Roots of an Equation Graph of h versus t When No Root Is Found Error 8 Example: Graph of f (x) = |x| + 1 Keystrokes Display | ¥ 000- ´ b 001-42,21, 1 002- 43 16 003- 004- 005-...
Page 203
Section 13: Finding the Roots of an Equation Graph of f (x) ´ G label letter label ...
Page 204
Section 13: Finding the Roots of an Equation Using in a Program Error 5...
Page 205
Section 13: Finding the Roots of an Equation Restriction on the Use of Error 7 Memory Requirements Error 10 For Further Information ...
Page 206
Section 14 Numerical Integration f x dx integrate Using ´ b label HP 15c Advanced Functions Handbook...
Page 207
Section 14: Numerical Integration ´ f Example: Bessel functions θ dθ θ dθ f θ θ Keystrokes Display | ¥ 000- ´ CLEAR M 000- ´ b 001-42,21, 0 θ θ 002- θ 003- 004- 43 32...
Page 211
Section 14: Numerical Integration x / x Keystrokes Display | ¥ 000- ´ b 001-42,21,.2 002- ® 003- ® ÷ 004- 005- 43 32 ´ f Keystrokes Display | ¥ 0.4401 0.0000 2.0000 ´ f 1.6054 x /x Error 0...
Page 212
Section 14: Numerical Integration Accuracy of no more • i Note: ´ • V ´ i V ´ ^ V might this possibility is very small HP 15c Advanced Functions Handbook...
Page 214
Section 14: Numerical Integration Example: Keystrokes Display ´ i 1.8826 3.1416 ´ f 1.3825 ® 1.7091...
Page 215
Section 14: Numerical Integration might Keystrokes Display ® 1.3825 ´ CLEAR u 1382459676 seven the calculator’s approximation in most cases will be more accurate than its uncertainty indicates just how accurate Using in a Program Error 7 Error 5...
Page 216
Section 14: Numerical Integration Memory Requirements Error 10 For Further Information ...
Page 217
Appendix A Error Conditions Error Error Error 2 Error 0 : Improper Mathematics Operation ÷ ¤ ⁄ O ÷ l ÷ ∆...
Page 218
Appendix A: Error Conditions Error 1 : Improper Matrix Operation Error 2 : Improper Statistics Operation ’ Error 2 √ M ∙ N n ∙ M M y P x M y P n ∙ x n ∙ M ŷ M n x N n y P n xy...
Page 219
Appendix A: Error Conditions Error 3 : Improper Register Number or Matrix Element Error 4 : Improper Line Number or Label Call ´ ¤ ' @ y ⁄ Error 5 : Subroutine Level Too Deep Error 6 : Improper Flag Number Error 7 : Recursive Error 8 : No Root Error 9 : Service...
Page 221
Appendix B Stack Lift and the LAST X Register Digit Entry Termination ” − “ Stack Lift after any operation except − or...
Page 222
Appendix B: Stack Lift and the LAST X Register Disabling Operations Stack Lift. Imaginary X-Register. does not change − Enabling Operations Stack Lift. 4.0000 4.0000 4.0000 Keys:...
Page 223
Appendix B: Stack Lift and the LAST X Register 4.0000 53.1301 53.1301 53.1301 5.0000 0.0000 Keys: Imaginary X-Register. when the next number is keyed or recalled into the display Neutral Operations Stack Lift. • ´ • ¤ • • ¦ t ”...
Page 224
Appendix B: Stack Lift and the LAST X Register LAST X Register ∆ ÷ À ‘ & ⁄ > ¤...
Page 225
Appendix C Memory Allocation The Memory Space availability allocation Registers registers data storage pool only common pool ...
Page 226
Appendix C: Memory Allocation MEMORY Permanent Index Register Allocatable DATA STORAGE POOL Statistics Registers Highest numbered data register = dd MOVABLE BOUNDARY dd + 1 COMMON POOL Total allocatable memory: uu pp...
Page 227
Appendix C: Memory Allocation Memory Status (W) memory uu pp−b highest-numbered total number uncommitted program bytes 19 78 00-0 Memory Reallocation Function dimension...
Page 228
Appendix C: Memory Allocation number of the highest data storage register you want allocated potentially ´ m % dd uu pp b Keystrokes Display cleared program memory ´ m % 1.0000 01 96 00-0 ´ m % 19.0000 19.0000 Restrictions on Reallocation Error 10...
Page 229
Appendix C: Memory Allocation only if they are uncommitted Error 10 occupied causing a loss of stored data Error 3 Program Memory maximum Automatic Program Memory Reallocation Conversion of Uncommitted Registers to Program Memory Program Bytes Movable Boundary...
Page 230
Appendix C: Memory Allocation Two-Byte Program Instructions . label ´ b ´ > t . label ´ X 9 .0 G . label ´ e 9 .0 | " ´ I 9 .0 O + - * ÷ l + - * ÷ ´...
Page 231
Appendix C: Memory Allocation ´ V ´ | " until you dimension it > in progress ´ CLEAR M...
Page 253
Appendix E: A Detailed Look at f Accuracy, Uncertainty, and Calculation Time by just one Example: θ x θ dθ...
Page 254
Appendix E: A Detailed Look at f θ θ dθ f θ θ θ Keystrokes Display | ¥ 000- ´ CLEAR M 000- ´ b 001-42,21, 0 002- 003- ® 004- 005- 006- 007- 008- 43 32 ´ f Keystrokes Display | ¥...
Page 255
Appendix E: A Detailed Look at f Keystrokes Display ® 7.79 ´ CLEAR u 7785820888 upper bound Keystrokes Display ´ i 7.786 3.142 ´ f 7.786 ® 1.448 ® 7.786 ´ CLEAR u 7785820888...
Page 256
Appendix E: A Detailed Look at f Keystrokes Display ´ i 7.7858 3.1416 ´ f 7.7807...
Page 257
Appendix E: A Detailed Look at f Uncertainty and the Display Format δ x δ x...
Page 258
Appendix E: A Detailed Look at f δ x δ x δ x δ x δ x δ x δ x F x dx δ x dx x dx δ x dx F x dx δ x 1.23 -04.
Page 259
Appendix E: A Detailed Look at f δ x relative • δ x • absolute δ x δ x same display uncertainty...
Page 260
Appendix E: A Detailed Look at f δ x dx δ x δ x • relative • absolute •...
Page 261
Appendix E: A Detailed Look at f Conditions That Could Cause Incorrect Results The possibility of this occurring is extremely remote extremely...
Page 262
Appendix E: A Detailed Look at f but characteristic...
Page 263
Appendix E: A Detailed Look at f Keystrokes Display | ¥ 000- ´ b 001-42,21, 1 ” 002- 003- 004- 005- 43 32 Keystrokes Display | ¥ ´ i 0.000 “ 99 ´ f 0.000...
Page 266
Appendix E: A Detailed Look at f Conditions That Prolong Calculation Time...
Page 267
Appendix E: A Detailed Look at f Keystrokes Display 0.000 “ 3 ´ f 1.000 ® 1.824...
Page 268
In order for the integral to be approximated with the same accuracy over the larger interval as over the smaller interval, the density of the sample points must be the same in the region where the function is interesting HP 15c Advanced Functions Handbook...
Page 269
Appendix E: A Detailed Look at f Obtaining the Current Approximation to an Integral ¦ ¦ running running ¦ ...
Page 270
Appendix E: A Detailed Look at f   − + ¦ For Advanced Information HP 15c Advanced Functions Handbook...
Page 271
Appendix F Batteries, Self-Tests, and Regulatory Information Batteries Low-Power Indication ✱ Use only fresh batteries Do not use rechargeable batteries Warning...
Page 272
Appendix F: Batteries, Self-Tests, and Regulatory Information Installing New Batteries Note: Pr Error...
Page 273
Appendix F: Batteries, Self-Tests, and Regulatory Information Verifying Proper Operation (Self-Tests) 1.L 2.C 3.H ...
Page 274
Appendix F: Batteries, Self-Tests, and Regulatory Information Legal Notice * Manufacturer:...
Page 275
Appendix F: Batteries, Self-Tests, and Regulatory Information Customer Care Regulatory Information and Environmental Limits Limited Hardware Warranty...
Page 276
Appendix F: Batteries, Self-Tests, and Regulatory Information Federal Communications Commission Notice Modifications Declaration of Conformity for Products Marked with FCC Logo, United States Only...
Page 277
Appendix F: Batteries, Self-Tests, and Regulatory Information Canadian Notice Avis Canadien For Australia Only WARNING! If it is suspected a button/coin battery has been swallowed or otherwise placed inside any part of the body, a person should contact the Australian Poisons Information Centre on 13 11 26 immediately for 24/7 fast, expert advice.
Page 278
Appendix F: Batteries, Self-Tests, and Regulatory Information Perchlorate Material—Special Handling May Apply Chemical Substances Disposal of Waste Equipment by Users in Private Households in the European Union...
Page 279
Appendix F: Batteries, Self-Tests, and Regulatory Information European Union Regulatory Notice...
Page 280
Appendix F: Batteries, Self-Tests, and Regulatory Information Japanese Notice この装置は クラスB情報技術装置です。 この装置は 家庭環境で使用 することを目的としていますが この装置がラジオやテレビジョン受信機に 近接して使用されると 受信障害を引き起こすことがあります。 取扱説明書に従って正しい取り扱いをして下さい。 VCCI一B Korean Notice 이 기기는 가정용(B급)으로 전자파적합등록을 한 기기로서 주 B급 기기 로 가정에서 사용하는 것을 목적으로 하며, 모든 지역에서 사 (가정용 방송통신기기) 용할...
Page 290
Function Summary and Index Storage CLEAR Q (page 43) (page 26) 9 .0 (page 42) (page 35) GRAD (page 26) + - * Trigonometry (page 44) ÷ [ \ ] 9 .0 (page 42) GRAD (page 26) (page , { / * ÷...
Page 291
Programming Summary and Index − ‚ (page 144) (page 83) (page 83) Â (page 67) A B C Á E 0 1 2 3 4 5 6 7 8 9 .0 (page 90) .1 .2 .3 .4 .5 .6 .7 .8 .9 (page 82) line number (page 109) (page...
Page 292
Programming Summary and Index £ ~ T (page 68) G (page 101) (page 109) (page 91) (page 92) " (pages 132, (page 109) 174) 9 (page 92) 5 x y 6 x y (page 92) 7 x y 8 x y 9 x y...
Page 306
The HP 15c Keyboard and Continuous Memory MEMORY STACK Real Imaginary LAST X DATA STORAGE POOL COMMON POOL Matrix Memory Imaginary Stack Σx Σx Uncommitted Registers Σy Program Memory Σy up to seven Σxy program lines per register within...
Need help?
Do you have a question about the 15c Collector's Edition and is the answer not in the manual?
Questions and answers