ABB RET650 Technical Manual

ABB RET650 Technical Manual

Relion 650 series transformer protection
Hide thumbs Also See for RET650:
Table of Contents

Advertisement

®
Relion
650 series
Transformer protection RET650
Technical manual

Advertisement

Table of Contents
loading

Summary of Contents for ABB RET650

  • Page 1 ® Relion 650 series Transformer protection RET650 Technical manual...
  • Page 3 Document ID: 1MRK 504 135-UEN Issued: October 2016 Revision: A Product version: 1.3 © Copyright 2013 ABB. All rights reserved...
  • Page 4 Copyright This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose. The software and hardware described in this document is furnished under a license and may be used or disclosed only in accordance with the terms of such license.
  • Page 5 In case any errors are detected, the reader is kindly requested to notify the manufacturer. Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.
  • Page 6 (EMC Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standards EN 50263 and EN 60255-26 for the EMC directive, and with the product standards EN 60255-1 and EN 60255-27 for the low voltage directive.
  • Page 7: Table Of Contents

    Table of contents Table of contents Section 1 Introduction..............29 This manual..................29 Intended audience................29 Product documentation..............30 Product documentation set............30 Document revision history............31 Related documents..............31 Symbols and conventions..............32 Symbols..................32 Document conventions..............33 Section 2 Available functions............35 Main protection functions..............35 Back-up protection functions............
  • Page 8 Table of contents Basic part for LED indication module..........58 Identification................58 Function block................58 Signals..................59 Settings..................60 LCD part for HMI function keys control module........60 Identification................60 Function block................60 Signals..................61 Settings..................61 Operation principle................62 Local HMI..................62 Display..................62 LEDs..................65 Keypad...................
  • Page 9 Table of contents Restrained and unrestrained limits of the differential protection................94 Fundamental frequency negative sequence differential currents.................. 96 Internal/external fault discriminator........98 Unrestrained, and sensitive negative sequence protections 101 Instantaneous differential currents........103 Harmonic and waveform block criteria......... 103 Switch onto fault feature............104 Logic diagram...............105 Technical data................
  • Page 10 Table of contents Operation principle..............125 Resistive reach in forward direction........126 Resistive reach in reverse direction........127 Reactive reach in forward and reverse direction....128 Basic detection logic.............128 Operating and inhibit conditions........... 130 Technical data................130 Underimpedance protection for generators and transformers ZGCPDIS..................130 Identification................
  • Page 11 Table of contents Identification ................143 Functionality................143 Function block................144 Signals..................144 Settings..................145 Monitored data................147 Operation principle..............147 Second harmonic blocking element...........151 Technical data................152 Instantaneous residual overcurrent protection EFPIOC ....152 Identification ................152 Functionality................153 Function block................153 Signals..................153 Settings..................153 Monitored data................154...
  • Page 12 Table of contents Operation principle..............175 Technical data................179 Breaker failure protection 3-phase activation and output CCRBRF 179 Identification................179 Functionality................179 Function block................180 Signals..................180 Settings..................181 Monitored data................181 Operation principle..............182 Technical data................184 Pole discordance protection CCRPLD .......... 185 Identification ................
  • Page 13 Table of contents Signals..................198 Settings..................199 Monitored data................200 Operation principle..............200 Technical data................201 Section 9 Voltage protection............203 Two step undervoltage protection UV2PTUV ........203 Identification................203 Functionality................203 Function block................203 Signals..................204 Settings..................204 Monitored data................205 Operation principle..............205 Measurement principle............206 Time delay................206 Blocking................207 Design..................
  • Page 14 Table of contents Design.................. 219 Technical data................221 Overexcitation protection OEXPVPH ..........221 Identification................221 Functionality................221 Function block................222 Signals..................222 Settings..................222 Monitored data................223 Operation principle..............223 Measured voltage..............225 Operate time of the overexcitation protection.......226 Cooling................. 228 Overexcitation protection function measurands....229 Overexcitation alarm............
  • Page 15 Table of contents Technical data................238 Rate-of-change frequency protection SAPFRC ......238 Identification................239 Functionality................239 Function block................239 Signals..................239 Settings..................240 Operation principle..............240 Measurement principle............240 Time delay................240 Design.................. 241 Technical data................242 Section 11 Secondary system supervision........243 Fuse failure supervision SDDRFUF..........243 Identification................
  • Page 16 Table of contents Settings................259 Circuit breaker SXCBR..............259 Signals..................259 Settings................260 Circuit switch SXSWI..............260 Signals..................260 Settings................261 Bay control QCBAY..............262 Identification ................ 262 Functionality................. 262 Function block..............262 Signals..................262 Settings................263 Local remote LOCREM............. 263 Identification ................ 263 Functionality................. 263 Function block..............
  • Page 17 Table of contents Interlocking for bus-section breaker A1A2_BS......275 Identification................. 275 Functionality................. 276 Function block..............276 Logic diagram...............277 Signals..................278 Settings................280 Interlocking for bus-section disconnector A1A2_DC ....280 Identification................. 280 Functionality................. 280 Function block..............281 Logic diagram...............281 Signals..................281 Settings................282 Interlocking for bus-coupler bay ABC_BC ........
  • Page 18 Table of contents Identification................. 322 Functionality................. 322 Function block..............323 Logic diagram...............323 Signals..................325 Settings................326 Position evaluation POS_EVAL..........327 Identification................. 327 Functionality................. 327 Function block..............327 Logic diagram...............327 Signals..................328 Settings................328 Operation principle..............328 Voltage control ................331 Functionality................331 Automatic voltage control for tapchanger, parallel control TR8ATCC .................
  • Page 19 Table of contents Operation principle..............355 Selector mini switch VSGGIO............355 Identification................355 Functionality................356 Function block................356 Signals..................356 Settings..................357 Operation principle..............357 IEC 61850 generic communication I/O functions DPGGIO.... 358 Identification................358 Functionality................358 Function block................358 Signals..................358 Settings..................359 Operation principle..............359 Single point generic control 8 signals SPC8GGIO......
  • Page 20 Table of contents Signals..................366 Settings..................367 Function commands generic for IEC 60870-5-103 I103GENCMD.367 Functionality................367 Function block................368 Signals..................368 Settings..................368 IED commands with position and select for IEC 60870-5-103 I103POSCMD.................368 Functionality................368 Function block................369 Signals..................369 Settings..................369 Section 13 Logic................371 Tripping logic common 3-phase output SMPPTRC......371 Identification................
  • Page 21 Table of contents Fixed signals FXDSIGN..............391 Identification................391 Functionality................391 Function block................391 Signals..................391 Settings..................392 Operation principle..............392 Boolean 16 to integer conversion B16I...........392 Identification................392 Functionality................392 Function block................393 Signals..................393 Settings..................394 Monitored data................394 Operation principle..............394 Boolean 16 to integer conversion with logic node representation B16IFCVI..................
  • Page 22 Table of contents Signals..................404 Settings..................405 Operation principle..............405 Operation Accuracy..............406 Memory storage..............406 Technical data................407 Section 14 Monitoring..............409 Measurements................409 Functionality................409 Measurements CVMMXN............410 Identification ................ 410 Function block..............411 Signals..................411 Settings................412 Monitored data..............415 Phase current measurement CMMXU........415 Identification ................
  • Page 23 Table of contents Settings................426 Monitored data..............427 Operation principle..............427 Measurement supervision............ 427 Measurements CVMMXN.............432 Phase current measurement CMMXU......... 437 Phase-phase and phase-neutral voltage measurements VMMXU, VNMMXU.............. 438 Voltage and current sequence measurements VMSQI, CMSQI..................438 Technical data................438 Event Counter CNTGGIO...............439 Identification................
  • Page 24 Table of contents Settings................452 Analog input signals A4RADR...........455 Identification................. 455 Function block..............455 Signals..................456 Settings................456 Binary input signals BxRBDR............ 460 Identification................. 460 Function block..............460 Signals..................460 Settings................461 Operation principle..............466 Disturbance information............468 Indications ................468 Event recorder ..............468 Event list ................468 Trip value recorder ..............
  • Page 25 Table of contents Input signals................. 477 Operation principle..............477 Technical data................477 Trip value recorder................. 477 Functionality................477 Function block................478 Signals..................478 Input signals................. 478 Operation principle..............478 Technical data................479 Disturbance recorder..............479 Functionality................479 Function block................479 Signals..................479 Settings..................479 Operation principle..............
  • Page 26 Table of contents Identification................487 Functionality................488 Function block................488 Signals..................488 Settings..................488 Operation principle..............489 Station battery supervision SPVNZBAT......... 489 Identification................489 Function block................489 Functionality................489 Signals..................490 Settings..................490 Measured values............... 491 Monitored Data................491 Operation principle ..............491 Technical data................492 Insulation gas monitoring function SSIMG........
  • Page 27 Table of contents Operation counter..............505 Accumulation of I t..............506 Remaining life of the circuit breaker........508 Circuit breaker spring charged indication......509 Gas pressure supervision.............510 Technical data................511 Measurands for IEC 60870-5-103 I103MEAS........ 511 Functionality................511 Function block................512 Signals..................513 Settings..................513 Measurands user defined signals for IEC 60870-5-103 I103MEASUSR................514...
  • Page 28 Table of contents Status for user defined signals for IEC 60870-5-103 I103USRDEF521 Functionality................521 Function block................522 Signals..................522 Settings..................523 Section 15 Metering............... 525 Pulse counter PCGGIO..............525 Identification................525 Functionality................525 Function block................525 Signals..................525 Settings..................526 Monitored data................526 Operation principle..............526 Technical data................
  • Page 29 Table of contents Operation principle..............540 GOOSE VCTR configuration for send and receive GOOSEVCTRCONF..............541 Identification................541 Functionality................541 Settings..................542 GOOSE voltage control receiving block GOOSEVCTRRCV..542 Identification................542 Functionality................542 Function block................542 Signals..................543 Operation principle ..............543 GOOSE function block to receive a double point value GOOSEDPRCV................543 Identification................
  • Page 30 Table of contents IEC 60870-5-103 communication protocol........549 Functionality................549 Settings..................550 IEC 61850-8-1 redundant station bus communication....551 Functionality ................551 Principle of operation..............551 Function block................553 Setting parameters..............553 Activity logging parameters ACTIVLOG......... 553 Activity logging ACTIVLOG............553 Settings..................553 Generic security application component AGSAL......554 Generic security application AGSAL.........
  • Page 31 Table of contents Time system, summer time ends DSTEND.......566 Identification................. 566 Settings................566 Time zone from UTC TIMEZONE..........566 Identification................. 566 Settings................567 Time synchronization via IRIG-B..........567 Identification................. 567 Settings................567 Operation principle..............567 General concepts..............567 Real-time clock (RTC) operation.......... 569 Synchronization alternatives..........
  • Page 32 Table of contents Product information ............... 579 Identification................579 Functionality................579 Settings..................580 Primary system values PRIMVAL...........580 Identification................580 Functionality................580 Settings..................580 Signal matrix for analog inputs SMAI..........580 Functionality................580 Identification................581 Function block................581 Signals..................582 Settings..................583 Operation principle ..............585 Summation block 3 phase 3PHSUM..........
  • Page 33 Table of contents Function block................596 Signals..................596 Settings..................596 Operation principle..............596 Denial of service................597 Functionality................597 Denial of service, frame rate control for front port DOSFRNT...597 Identification................. 597 Function block..............597 Signals..................597 Settings................598 Monitored data..............598 Denial of service, frame rate control for LAN1 port DOSLAN1..598 Identification.................
  • Page 34 Table of contents Signal outputs.................617 Power outputs.................617 Data communication interfaces............618 Enclosure class................619 Ingress protection................619 Environmental conditions and tests..........620 Section 20 IED and functionality tests..........621 Electromagnetic compatibility tests..........621 Insulation tests................623 Mechanical tests................623 Product safety.................623 EMC compliance................624 Section 21 Time inverse characteristics.........625 Application..................
  • Page 35: Section 1 Introduction

    Section 1 1MRK 504 135-UEN A Introduction Section 1 Introduction This manual The technical manual contains application and functionality descriptions and lists function blocks, logic diagrams, input and output signals, setting parameters and technical data, sorted per function. The manual can be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.
  • Page 36: Product Documentation

    Section 1 1MRK 504 135-UEN A Introduction Product documentation 1.3.1 Product documentation set Engineering manual Installation manual Commissioning manual Operation manual Application manual Technical manual Communication protocol manual IEC07000220-3-en.vsd IEC07000220 V3 EN Figure 1: The intended use of manuals throughout the product lifecycle The engineering manual contains instructions on how to engineer the IEDs using the various tools available within the PCM600 software.
  • Page 37: Document Revision History

    Document revision history Document revision/date History -/March 2013 First release A/October 2016 Minor corrections made 1.3.3 Related documents Documents related to RET650 Identity number Application manual 1MRK 504 134-UEN Technical manual 1MRK 504 135-UEN Commissioning manual 1MRK 504 136-UEN Product Guide, configured...
  • Page 38: Symbols And Conventions

    Section 1 1MRK 504 135-UEN A Introduction 650 series manuals Identity number Cyber Security deployment guidelines 1MRK 511 285-UEN Point list manual, DNP 3.0 1MRK 511 283-UEN Engineering manual 1MRK 511 284-UEN Operation manual 1MRK 500 096-UEN Installation manual 1MRK 514 016-UEN Accessories, 650 series 1MRK 513 023-BEN MICS...
  • Page 39: Document Conventions

    Section 1 1MRK 504 135-UEN A Introduction 1.4.2 Document conventions • Abbreviations and acronyms in this manual are spelled out in the glossary. The glossary also contains definitions of important terms. • Push button navigation in the LHMI menu structure is presented by using the push button icons.
  • Page 41: Section 2 Available Functions

    Section 2 1MRK 504 135-UEN A Available functions Section 2 Available functions Main protection functions IEC 61850 or ANSI Function description Transformer Function name Differential protection T2WPDIF Transformer differential protection, two winding 0–1 T3WPDIF Transformer differential protection, three winding 0–1 REFPDIF Restricted earth fault protection, low impedance 0–3...
  • Page 42: Control And Monitoring Functions

    Section 2 1MRK 504 135-UEN A Available functions IEC 61850 or ANSI Function description Transformer Function name CCRBRF 50BF Breaker failure protection, 3–phase activation and 0–3 output CCRPLD 52PD Pole discordance protection 0–3 GUPPDUP Directional underpower protection 0–2 GOPPDOP Directional overpower protection 0–2 DNSPTOC Negative sequence based overcurrent function...
  • Page 43 Section 2 1MRK 504 135-UEN A Available functions IEC 61850 or Function ANSI Function description Transformer name I103IEDCMD IED commands for IEC60870-5-103 I103USRCMD Function commands user defined for IEC60870-5-103 I103GENCMD Function commands generic for IEC60870-5-103 I103POSCMD IED commands with position and select for IEC60870-5-103 Apparatus control and Interlocking APC8...
  • Page 44 Section 2 1MRK 504 135-UEN A Available functions IEC 61850 or Function ANSI Function description Transformer name INVERTER Configurable logic blocks PULSETIMER Configurable logic blocks GATE Configurable logic blocks Configurable logic blocks LOOPDELAY Configurable logic blocks TIMERSET Configurable logic blocks Configurable logic blocks SRMEMORY Configurable logic blocks...
  • Page 45 Section 2 1MRK 504 135-UEN A Available functions IEC 61850 or Function ANSI Function description Transformer name AISVBAS Function block for service values presentation of the analog inputs TM_P_P2 Function block for service values presentation of primary analog inputs 600TRM AM_P_P4 Function block for service values presentation of primary analog inputs 600AIM...
  • Page 46: Station Communication

    Section 2 1MRK 504 135-UEN A Available functions IEC 61850 or Function ANSI Function description Transformer name Metering PCGGIO Pulse counter ETPMMTR Function for energy calculation and demand handling Station communication IEC 61850 or Function ANSI Function description Transformer name Station communication IEC61850-8-1 IEC 61850 communication protocol...
  • Page 47: Basic Ied Functions

    Section 2 1MRK 504 135-UEN A Available functions IEC 61850 or Function ANSI Function description Transformer name DNPFREC DNP3.0 fault records for TCP/IP communication protocol OPTICAL103 IEC60870-5-103 Optical serial communication RS485103 IEC60870-5-103 serial communication for RS485 GOOSEINTLKRCV Horizontal communication via GOOSE for interlocking GOOSEBINRCV GOOSE binary receive...
  • Page 48 Section 2 1MRK 504 135-UEN A Available functions IEC 61850/Function Function description block name TIMESYNCHGEN Time synchronization SNTP Time synchronization DTSBEGIN, DTSEND, Time synchronization, daylight saving TIMEZONE IRIG-B Time synchronization SETGRPS Setting group handling ACTVGRP Parameter setting groups TESTMODE Test mode functionality CHNGLCK Change lock function PRIMVAL...
  • Page 49: Section 3 Analog Inputs

    Section 3 1MRK 504 135-UEN A Analog inputs Section 3 Analog inputs Introduction Analog input channels in the IED must be set properly in order to get correct measurement results and correct protection operations. For power measuring and all directional and differential functions the directions of the input currents must be defined in order to reflect the way the current transformers are installed/connected in the field ( primary and secondary connections ).
  • Page 50: Presumptions For Technical Data

    Section 3 1MRK 504 135-UEN A Analog inputs Definition of direction Definition of direction for directional functions for directional functions Reverse Forward Forward Reverse Protected Object Line, transformer, etc e.g. P, Q, I e.g. P, Q, I Measured quantity is Measured quantity is positive when flowing positive when flowing...
  • Page 51: Settings

    Section 3 1MRK 504 135-UEN A Analog inputs Settings Dependent on ordered IED type. Table 1: AISVBAS Non group settings (basic) Name Values (Range) Unit Step Default Description PhaseAngleRef TRM - Channel 1 TRM - Channel 1 Reference channel for phase angle TRM - Channel 2 presentation TRM - Channel 3...
  • Page 52 Section 3 1MRK 504 135-UEN A Analog inputs Name Values (Range) Unit Step Default Description CTStarPoint6 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec6 0.1 - 10.0 Rated CT secondary current CTprim6 1 - 99999 1000 Rated CT primary current VTsec7 0.001 - 999.999 0.001...
  • Page 53 Section 3 1MRK 504 135-UEN A Analog inputs Name Values (Range) Unit Step Default Description CTprim7 1 - 99999 1000 Rated CT primary current CTStarPoint8 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec8 0.1 - 10.0 Rated CT secondary current CTprim8 1 - 99999 1000...
  • Page 54 Section 3 1MRK 504 135-UEN A Analog inputs Table 5: TRM_4I_6U Non group settings (basic) Name Values (Range) Unit Step Default Description CTStarPoint1 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec1 0.1 - 10.0 Rated CT secondary current CTprim1 1 - 99999 1000...
  • Page 55 Section 3 1MRK 504 135-UEN A Analog inputs Name Values (Range) Unit Step Default Description CTStarPoint3 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec3 0.1 - 10.0 Rated CT secondary current CTprim3 1 - 99999 1000 Rated CT primary current CTStarPoint4 FromObject ToObject...
  • Page 56 Section 3 1MRK 504 135-UEN A Analog inputs Name Values (Range) Unit Step Default Description CTprim4 1 - 99999 1000 Rated CT primary current CTStarPoint5 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec5 0.1 - 10.0 Rated CT secondary current CTprim5 1 - 99999 1000...
  • Page 57: Section 4 Binary Input And Output Modules

    Section 4 1MRK 504 135-UEN A Binary input and output modules Section 4 Binary input and output modules Binary input 4.1.1 Binary input debounce filter The debounce filter eliminates bounces and short disturbances on a binary input. A time counter is used for filtering. The time counter is increased once in a millisecond when a binary input is high, or decreased when a binary input is low.
  • Page 58: Settings

    Section 4 1MRK 504 135-UEN A Binary input and output modules Each binary input has an oscillation count parameter OscillationCountx and an oscillation time parameter OscillationTimex, where x is the number of the binary input of the module in question. 4.1.3 Settings 4.1.3.1...
  • Page 59: Setting Parameters For Communication Module

    Section 4 1MRK 504 135-UEN A Binary input and output modules Name Values (Range) Unit Step Default Description OscillationTime6 0.000 - 600.000 0.001 0.000 Oscillation time for input 6 Threshold7 6 - 900 Threshold in percentage of station battery voltage for input 7 DebounceTime7 0.000 - 0.100 0.001...
  • Page 60 Section 4 1MRK 504 135-UEN A Binary input and output modules Name Values (Range) Unit Step Default Description Threshold4 6 - 900 Threshold in percentage of station battery voltage for input 4 DebounceTime4 0.000 - 0.100 0.001 0.005 Debounce time for input 4 OscillationCount4 0 - 255 Oscillation count for input 4...
  • Page 61 Section 4 1MRK 504 135-UEN A Binary input and output modules Name Values (Range) Unit Step Default Description DebounceTime12 0.000 - 0.100 0.001 0.005 Debounce time for input 12 OscillationCount12 0 - 255 Oscillation count for input 12 OscillationTime12 0.000 - 600.000 0.001 0.000 Oscillation time for input 12...
  • Page 63: Section 5 Local Human-Machine-Interface Lhmi

    Section 5 1MRK 504 135-UEN A Local Human-Machine-Interface LHMI Section 5 Local Human-Machine-Interface LHMI Local HMI screen behaviour 5.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Local HMI screen behaviour SCREEN 5.1.2 Settings Table 12: SCREEN Non group settings (basic) Name Values (Range)
  • Page 64: Signals

    Section 5 1MRK 504 135-UEN A Local Human-Machine-Interface LHMI LHMICTRL CLRLEDS HMI-ON RED-S YELLOW-S YELLOW-F CLRPULSE LEDSCLRD IEC09000320-1-en.vsd IEC09000320 V1 EN Figure 3: LHMICTRL function block 5.2.3 Signals Table 13: LHMICTRL Input signals Name Type Default Description CLRLEDS BOOLEAN Input to clear the LCD-HMI LEDs Table 14: LHMICTRL Output signals Name...
  • Page 65: Signals

    Section 5 1MRK 504 135-UEN A Local Human-Machine-Interface LHMI LEDGEN BLOCK NEWIND RESET IEC09000321-1-en.vsd IEC09000321 V1 EN Figure 4: LEDGEN function block GRP1_LED1 ^HM1L01R ^HM1L01Y ^HM1L01G IEC09000322 V1 EN Figure 5: GRP1_LED1 function block The GRP1_LED1 function block is an example, all 15 LED in each of group 1 - 3 has a similar function block.
  • Page 66: Settings

    Section 5 1MRK 504 135-UEN A Local Human-Machine-Interface LHMI 5.3.4 Settings Table 18: LEDGEN Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off/On tRestart 0.0 - 100.0 Defines the disturbance length tMax 0.0 - 100.0 Maximum time for the definition of a disturbance Table 19:...
  • Page 67: Signals

    Section 5 1MRK 504 135-UEN A Local Human-Machine-Interface LHMI 5.4.3 Signals Table 20: FNKEYMD1 Input signals Name Type Default Description LEDCTL1 BOOLEAN LED control input for function key Table 21: FNKEYMD1 Output signals Name Type Description FKEYOUT1 BOOLEAN Output controlled by function key 5.4.4 Settings Table 22:...
  • Page 68: Operation Principle

    Section 5 1MRK 504 135-UEN A Local Human-Machine-Interface LHMI Operation principle 5.5.1 Local HMI IEC12000175 V1 EN Figure 7: Local human-machine interface The LHMI of the IED contains the following elements: • Display (LCD) • Buttons • LED indicators • Communication port for PCM600 The LHMI is used for setting, monitoring and controlling.
  • Page 69 Section 5 1MRK 504 135-UEN A Local Human-Machine-Interface LHMI IEC13000063-1-en.vsd IEC13000063 V1 EN Figure 8: Display layout 1 Path 2 Content 3 Status 4 Scroll bar (appears when needed) • The path shows the current location in the menu structure. If the path is too long to be shown, it is truncated from the beginning, and the truncation is indicated with three dots.
  • Page 70 Section 5 1MRK 504 135-UEN A Local Human-Machine-Interface LHMI IEC13000045-1-en.vsd IEC13000045 V1 EN Figure 9: Truncated path The number before the function instance, for example ETHFRNT:1, indicates the instance number. The function button panel shows on request what actions are possible with the function buttons.
  • Page 71: Leds

    Section 5 1MRK 504 135-UEN A Local Human-Machine-Interface LHMI GUID-D20BB1F1-FDF7-49AD-9980-F91A38B2107D V1 EN Figure 11: Alarm LED panel The function button and alarm LED panels are not visible at the same time. Each panel is shown by pressing one of the function buttons or the Multipage button. Pressing the ESC button clears the panel from the display.
  • Page 72: Led

    Section 5 1MRK 504 135-UEN A Local Human-Machine-Interface LHMI IEC11000247 V2 EN Figure 12: LHMI keypad with object control, navigation and command push- buttons and RJ-45 communication port 1...5 Function button Close Open Escape Left Down Right User Log on Enter Remote/Local Uplink LED...
  • Page 73: Status Leds

    Section 5 1MRK 504 135-UEN A Local Human-Machine-Interface LHMI Each indication LED on local HMI can be set individually to operate in 6 different sequences; two as follow type and four as latch type. Two of the latching sequence types are intended to be used as a protection indication system, either in collecting or restarting mode, with reset functionality.
  • Page 74 Section 5 1MRK 504 135-UEN A Local Human-Machine-Interface LHMI • From function input • The active indications can also be acknowledged/reset from an input, ACK_RST, to the function. This input can for example be configured to a binary input operated from an external push button. The function is positive edge triggered, not level triggered.
  • Page 75 Section 5 1MRK 504 135-UEN A Local Human-Machine-Interface LHMI Activating signal IEC01000228_2_en.vsd IEC01000228 V2 EN Figure 14: Operating Sequence 1 (Follow-S) If inputs for two or more colors are active at the same time to one LED the priority is as described above.
  • Page 76 Section 5 1MRK 504 135-UEN A Local Human-Machine-Interface LHMI Activating signal Acknow. en01000231.vsd IEC01000231 V1 EN Figure 16: Operating Sequence 3 LatchedAck-F-S When an acknowledgment is performed, all indications that appear before the indication with higher priority has been reset, will be acknowledged, independent of if the low priority indication appeared before or after acknowledgment.
  • Page 77 Section 5 1MRK 504 135-UEN A Local Human-Machine-Interface LHMI Activating signal GREEN Activating signal YELLOW Activating signal RED Acknow. IEC09000314-1-en.vsd IEC09000314 V1 EN Figure 18: Operating sequence 3, three colors involved, alternative 1 If an indication with higher priority appears after acknowledgment of a lower priority indication the high priority indication will be shown as not acknowledged according Figure Activating...
  • Page 78 Section 5 1MRK 504 135-UEN A Local Human-Machine-Interface LHMI Activating signal Reset IEC01000235_2_en.vsd IEC01000235 V2 EN Figure 20: Operating Sequence 5 LatchedColl-S That means if an indication with higher priority has reset while an indication with lower priority still is active at the time of reset, the LED will change color according to Figure Activating signal GREEN...
  • Page 79 Section 5 1MRK 504 135-UEN A Local Human-Machine-Interface LHMI Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000239_2-en.vsd IEC01000239 V2 EN Figure 22: Operating sequence 6 (LatchedReset-S), two indications within same disturbance Figure 23 shows the timing diagram for a new indication after tRestart time has elapsed.
  • Page 80 Section 5 1MRK 504 135-UEN A Local Human-Machine-Interface LHMI Figure 24 shows the timing diagram when a new indication appears after the first one has reset but before tRestart has elapsed. Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset...
  • Page 81: Function Keys

    Section 5 1MRK 504 135-UEN A Local Human-Machine-Interface LHMI Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000242_2_en.vsd IEC01000242 V2 EN Figure 25: Operating sequence 6 (LatchedReset-S), manual reset 5.5.3 Function keys 5.5.3.1 Functionality Local Human-Machine-Interface (LHMI) has five function buttons, directly to the left...
  • Page 82 Section 5 1MRK 504 135-UEN A Local Human-Machine-Interface LHMI Operating sequence The operation mode is set individually for each output, either OFF, TOGGLE or PULSED. Setting OFF This mode always gives the output the value. A change of the input value does not affect the output value.
  • Page 83 Section 5 1MRK 504 135-UEN A Local Human-Machine-Interface LHMI Input value Output value pulse pulse IEC09000332_1_en.vsd IEC09000332 V1 EN Figure 28: Sequence diagram for setting PULSED Input function All inputs work the same way: When the LHMI is configured so that a certain function button is of type CONTROL, then the corresponding input on this function block becomes active, and will light the yellow function button LED when high.
  • Page 85: Section 6 Differential Protection

    Section 6 1MRK 504 135-UEN A Differential protection Section 6 Differential protection Transformer differential protection 6.1.1 Functionality The Transformer differential protection, two-winding T2WPDIF and Transformer differential protection, three-winding T3WPDIF are provided with internal CT ratio matching and vector group compensation and settable zero sequence current elimination.
  • Page 86: Transformer Differential Protection, Two Winding T2Wpdif

    Section 6 1MRK 504 135-UEN A Differential protection Stabilization is included for inrush and overexcitation currents respectively, cross- blocking is also available. Adaptive stabilization is also included for system recovery inrush and CT saturation during external faults. A high set unrestrained differential current protection element is included for a very high speed tripping at a high internal fault currents.
  • Page 87: Settings

    Section 6 1MRK 504 135-UEN A Differential protection Table 25: T2WPDIF Output signals Name Type Description TRIP BOOLEAN General trip signal TRIPRES BOOLEAN Start signal from restrained differential protection TRIPUNRE BOOLEAN Start signal from unrestrained differential protection TRNSUNR BOOLEAN Start signal from unrestrained negative sequence differential protection TRNSSENS BOOLEAN...
  • Page 88 Section 6 1MRK 504 135-UEN A Differential protection Name Values (Range) Unit Step Default Description IdUnre 1.00 - 50.00 0.01 10.00 Unrestrained protection limit, multiple of W1 rated current I2/I1Ratio 5.0 - 100.0 15.0 Maximum ratio of 2nd harmonic to fundamental harmonic differential current I5/I1Ratio 5.0 - 100.0...
  • Page 89: Monitored Data

    Section 6 1MRK 504 135-UEN A Differential protection 6.1.2.5 Monitored data Table 28: T2WPDIF Monitored data Name Type Values (Range) Unit Description IDL1MAG REAL Magnitude of fundamental frequency differential current, phase IDL2MAG REAL Magnitude of fundamental frequency differential current, phase IDL3MAG REAL Magnitude of...
  • Page 90: Signals

    Section 6 1MRK 504 135-UEN A Differential protection 6.1.3.3 Signals Table 29: T3WPDIF Input signals Name Type Default Description I3PW1CT1 GROUP Three phase current connection winding 1 (W1) SIGNAL I3PW2CT1 GROUP Three phase current connection winding 2 (W2) SIGNAL I3PW3CT1 GROUP Three phase current connection winding 3 (W3) SIGNAL...
  • Page 91: Settings

    Section 6 1MRK 504 135-UEN A Differential protection 6.1.3.4 Settings Table 31: T3WPDIF Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On IdMin 0.10 - 0.60 0.01 0.30 Section 1 sensitivity current, usually W1 current EndSection1 0.20 - 1.50...
  • Page 92: Monitored Data

    Section 6 1MRK 504 135-UEN A Differential protection Name Values (Range) Unit Step Default Description ConnectTypeW3 WYE (Y) Delta (D) Connection type of winding 3: Y-wye or D- Delta (D) delta ClockNumberW2 0 [0 deg] 0 [0 deg] Phase displacement between W2 & 1 [30 deg lag] W1=HV winding, hour notation 2 [60 deg lag]...
  • Page 93: Operation Principle

    Section 6 1MRK 504 135-UEN A Differential protection 6.1.4 Operation principle The task of the power transformer differential protection is to determine whether a fault is within the protected zone, or outside of the protected zone. The protected zone is limited by the position of current transformers (see figure 32), and in principle can include more objects than just a transformer.
  • Page 94: Fundamental Frequency Differential Currents

    Section 6 1MRK 504 135-UEN A Differential protection proportional bias, which makes the protection operate for a certain percentage differential current related to the current through the transformer. This stabilizes the protection under through fault conditions while still permitting the system to have good basic sensitivity.
  • Page 95 Section 6 1MRK 504 135-UEN A Differential protection é ù é 1_ 1 ù é ù é ù Un W Un W ê ú ê ú ê ú ê ú × × × × × A IL 2 _ 1 ê...
  • Page 96 Section 6 1MRK 504 135-UEN A Differential protection When the end user enters all these parameters, transformer differential function automatically determines the matrix coefficients based on the following rules: For the phase reference, the highest voltage star (Y) connected winding is used. For example, if the power transformer is a Yd1 power transformer, the HV winding (Y) is taken as the phase reference winding.
  • Page 97 Section 6 1MRK 504 135-UEN A Differential protection Matrix with Zero Sequence Matrix with Zero Sequence Reduction set to On Reduction set to Off Matrix for winding with 120° é ù é ù 0 0 1 lagging ê ú ê ú...
  • Page 98 Section 6 1MRK 504 135-UEN A Differential protection HV star (Y) connected winding will be used as reference winding and zero sequence currents shall be subtracted on that side The LV winding is lagging for 150° With the help of table 34, the following matrix equation can be written for this power transformer: é...
  • Page 99: Differential Current Alarm

    Section 6 1MRK 504 135-UEN A Differential protection 6.1.4.3 Differential current alarm The fundamental frequency differential current level is monitored at all times within the differential function. As soon as all three fundamental frequency differential currents are set above the set alarm level (IDiffAlarm), the pickup timer is started. When the pre-set time, defined by setting parameter tAlarmDelay, has expired a differential current alarm is generated and the output signal IDALARM is set to logical value one.
  • Page 100: Restrained And Unrestrained Limits Of The Differential Protection

    Section 6 1MRK 504 135-UEN A Differential protection in false differential currents - consisting exclusively of the zero sequence currents. If high enough, these false differential currents can cause an unwanted disconnection of the healthy power transformer. They must therefore be subtracted from the fundamental frequency differential currents if an unwanted trip is to be avoided.
  • Page 101 Section 6 1MRK 504 135-UEN A Differential protection operate current [ times IBase ] Operate unconditionally UnrestrainedLimit Operate conditionally Section 1 Section 2 Section 3 SlopeSection3 IdMin SlopeSection2 Restrain EndSection1 restrain current [ times IBase ] EndSection2 en05000187-2.vsd IEC05000187 V2 EN Figure 33: Description of the restrained, and the unrestrained operate characteristics...
  • Page 102: Fundamental Frequency Negative Sequence Differential Currents

    Section 6 1MRK 504 135-UEN A Differential protection Section 2: In section 2, a certain minor slope is introduced which is supposed to cope with false differential currents due to higher than normal currents through the current transformers, such as during a transformer overloading situation. Section 3: The more pronounced slope in section 3 is designed to result in a higher tolerance to substantial current transformer saturation at high through-fault currents, which may be expected in this section.
  • Page 103 Section 6 1MRK 504 135-UEN A Differential protection é ù é ù é ù é ù é ù INS W INS W ê ú ê ú ê ú ê ú ê ú Ur W × × × × × × ×...
  • Page 104: Internal/External Fault Discriminator

    Section 6 1MRK 504 135-UEN A Differential protection current from the W2 side compensated for eventual power transformer phase shift and transferred to the power transformer W1 side. These negative sequence current contributions are phasors, which are further used in directional comparisons, to characterize a fault as internal or external.
  • Page 105 Section 6 1MRK 504 135-UEN A Differential protection IMinNegSeq NegSeqROA 90 deg 120 deg If one or the Internal/external other of fault boundary currents is too low, then no measurement NegSeqROA is done, and (Relay 120 degrees Operate is mapped Angle) 180 deg 0 deg...
  • Page 106 Section 6 1MRK 504 135-UEN A Differential protection • If the negative sequence current contributions from the W1 and the W2 sides are in phase, the fault is internal • If the negative sequence currents contributions from W1 and W2 sides are 180 degrees out of phase, the fault is external For example, for any unsymmetrical external fault, ideally the respective negative sequence current contributions from the W1 and W2 power transformer sides will be...
  • Page 107: Unrestrained, And Sensitive Negative Sequence Protections

    Section 6 1MRK 504 135-UEN A Differential protection zero value. However, during heavy faults, CT saturation might cause the measured phase angle to differ from 180 degrees for an external, and from 0 degrees for an internal fault. See figure for an example of a heavy internal fault with transient CT saturation.
  • Page 108 Section 6 1MRK 504 135-UEN A Differential protection because one or more of the fundamental frequency differential currents entered the operate region on the operate - restrain characteristic. So, this protection is not independent of the traditional restrained differential protection - it is activated after the first start signal has been placed.
  • Page 109: Instantaneous Differential Currents

    Section 6 1MRK 504 135-UEN A Differential protection 6.1.4.10 Instantaneous differential currents The instantaneous differential currents are calculated from the instantaneous values of the input currents in order to perform the harmonic analysis and waveform analysis upon each one of them (see section "Harmonic and waveform block criteria"...
  • Page 110: Switch Onto Fault Feature

    Section 6 1MRK 504 135-UEN A Differential protection IEC05000343 V1 EN Figure 37: Inrush currents to a transformer as seen by a protection IED. Typical is a high amount of the 2 harmonic, and intervals of low current, and low rate-of-change of current within each period. Cross-blocking between phases With the cross-blocking function, one of the three phases can block operation of the other two phases due to the harmonic pollution of the differential current in that phase...
  • Page 111: Logic Diagram

    Section 6 1MRK 504 135-UEN A Differential protection sinusoidal currents will flow from the very beginning. In this case the waveform block algorithm removes all its three block signals in a very short interval of time. This quick reset of the waveblock criterion will temporarily disable the second harmonic blocking feature of the differential protection function.
  • Page 112 Section 6 1MRK 504 135-UEN A Differential protection The following currents are inputs to the power transformer differential protection function. They must all be expressed in power system (primary) A. Instantaneous values of currents (samples) from the HV, and LV sides for two- winding power transformers, and from the HV, the first LV, and the second LV side for three-winding power transformers.
  • Page 113 Section 6 1MRK 504 135-UEN A Differential protection BLKUNRES IdUnre TRIPUNREL1 b>a IDL1MAG IBIAS STL1 BLOCK BLKRES TRIPRESL1 IDL1 BLK2HL1 Harmonic Wave BLKWAVL1 block BLK5HL1 Harmonic Cross Block Cross Block to L2 or L3 from L2 or L3 OpCrossBlock=On en06000545.vsd IEC06000545 V1 EN Figure 39: Transformer differential protection simplified logic diagram for Phase...
  • Page 114 Section 6 1MRK 504 135-UEN A Differential protection TRIPRESL1 TRIPRESL2 TRIPRES TRIPRESL3 TRIPUNREL1 TRIPUNREL2 TRIPUNRE TRIPUNREL3 TRIP TRNSSENS TRNSUNR en05000278.vsd IEC05000278 V1 EN Figure 41: Transformer differential protection internal grouping of tripping signals IEC05000279-TIFF V1 EN Figure 42: Transformer differential protection internal grouping of logical signals Logic in figures 39, 40, can be summarized as follows: The three fundamental frequency differential currents are applied in a phase...
  • Page 115 Section 6 1MRK 504 135-UEN A Differential protection all phases with set start signal are free of their respective block signals, a restrained trip TRIPRES and common trip TRIP are issued If a start signal is issued in a phase, and the fault has been classified as internal, then any eventual block signals are overridden and a unrestrained negative- sequence trip TRNSUNR and common trip TRIP are issued without any further delay.
  • Page 116: Technical Data

    Section 6 1MRK 504 135-UEN A Differential protection 6.1.5 Technical data Table 35: T2WPDIF, T3WPDIF technical data Function Range or value Accuracy Operating characteristic Adaptable ± 1.0% of Ir for I < Ir ± 1.0% of I for I > Ir Reset ratio >94% IBase on...
  • Page 117: Functionality

    Section 6 1MRK 504 135-UEN A Differential protection 6.2.2 Functionality Restricted earth-fault protection, low-impedance function REFPDIF can be used on all directly or low-impedance earthed windings. The REFPDIF function provides high sensitivity and high speed tripping as it protects each winding separately and thus does not need inrush stabilization.
  • Page 118: Settings

    Section 6 1MRK 504 135-UEN A Differential protection Signal Description IDIFF Magnitude of fundamental frequency differential current ANGLE Direction angle from zero sequence feature I2RATIO Second harmonic ratio 6.2.5 Settings Table 38: Basic general settings for the function REFPDIF (REF1-) Parameter Range Step...
  • Page 119: Operation Principle

    Section 6 1MRK 504 135-UEN A Differential protection 6.2.7 Operation principle 6.2.7.1 Fundamental principles of the restricted earth-fault protection Restricted earth-fault protection, low impedance function (REFPDIF) detects earth faults on earthed power transformer windings, most often an earthed star winding. REFPDIF is a winding protection of the differential type.
  • Page 120 CT sides of the current transformers, they will be approximately in phase if the current transformers are oriented as in figure 2, which is by ABB recommended orientation. The magnitudes of the two currents may be different, dependent on the magnitudes of zero sequence impedances of both sides.
  • Page 121: Operate And Restrain Characteristic

    Section 6 1MRK 504 135-UEN A Differential protection REFPDIF is a differential protection where the line zero sequence (residual) current is calculated from 3 line (terminal) currents, a bias quantity must give stability against false operations due to high through fault currents. To stabilize REFPDIF at external faults, a fixed bias characteristic is implemented.
  • Page 122: Calculation Of Differential Current And Bias Current

    Section 6 1MRK 504 135-UEN A Differential protection Zero- sequence diff. current in per unit Characteristic if IdMin = 1.0 pu operate slope = ----------------* 100 % restrain Operate conditionally IdMin range: 0.04 –1.00 IBase Slope 100% Reset Ratio in all sections: Section 3 0.95 (a constant) Section 1...
  • Page 123: Detection Of External Earth Faults

    Section 6 1MRK 504 135-UEN A Differential protection If there are two feeders included in the zone of protection of REFPDIF, then the respective bias current is found as the relatively highest of the following currents, that is, those which are connected in an application: ×...
  • Page 124: Algorithm Of The Restricted Earth-Fault Protection

    Section 6 1MRK 504 135-UEN A Differential protection (REFPDIF) must remain stable during an external fault, and immediately after the fault has been cleared by some other protection. For an external earth faults with no CT saturation, the residual current in the lines ) and the neutral current (I in figure 45) are theoretically equal in magnitude and are 180 degrees out-of-phase.
  • Page 125: Technical Data

    Section 6 1MRK 504 135-UEN A Differential protection calculated. If it is found to be above 60% the trip request counter is reset and TRIP remains zero. Finally, a check is made if the trip request counter is equal to or higher than 2. If it is and that at the same instance of time t , the actual bias current at this REFtrip...
  • Page 126: Introduction

    Section 6 1MRK 504 135-UEN A Differential protection 6.3.2 Introduction The 1Ph High impedance differential protection HZPDIF functions can be used when the involved CT cores have the same turns ratio and similar magnetizing characteristics. Each utilizes an external summation of the currents in the interconnected CTs, a series resistor, and a voltage dependent resistor which are mounted externally connected to the IED.
  • Page 127: Settings

    Section 6 1MRK 504 135-UEN A Differential protection 6.3.5 Settings Table 46: HZPDIF Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On U>Alarm 2 - 500 Alarm voltage level in volts on CT secondary side tAlarm 0.000 - 60.000 0.001...
  • Page 128: Technical Data

    Section 6 1MRK 504 135-UEN A Differential protection IEC05000301 V1 EN Figure 49: Logic diagram for 1Ph High impedance differential protection HZPDIF 6.3.8 Technical data Table 48: HZPDIF technical data Function Range or value Accuracy Operate voltage (20-400) V ± 1.0% of I I=U/R Reset ratio >95%...
  • Page 129: Section 7 Impedance Protection

    Section 7 1MRK 504 135-UEN A Impedance protection Section 7 Impedance protection Power swing detection ZMRPSB 7.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Power swing detection ZMRPSB Zpsb SYMBOL-EE V1 EN 7.1.2 Functionality Power swings may occur after disconnection of heavy loads or trip of big generation plants.
  • Page 130: Signals

    Section 7 1MRK 504 135-UEN A Impedance protection 7.1.4 Signals Table 49: ZMRPSB Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLKI01 BOOLEAN Block inhibit of start output for slow swing condition...
  • Page 131: Operation Principle

    Section 7 1MRK 504 135-UEN A Impedance protection Name Values (Range) Unit Step Default Description kLdRFw 0.50 - 0.90 Mult 0.01 0.75 Multiplication factor for inner resistive load boundary, forward kLdRRv 0.50 - 0.90 Mult 0.01 0.75 Multiplication factor for inner resistive load boundary, reverse IMinOpPE 5 - 30...
  • Page 132: Resistive Reach In Forward Direction

    Section 7 1MRK 504 135-UEN A Impedance protection R1LIn X1OutFw X1InFw R1FInRv R1FInFw ArgLd ArgLd RLdInRv RLdInFw RLdOutFw RLdOutRv X1InRv X1OutRv IEC09000222_1_en.vsd IEC09000222 V1 EN Figure 51: Operating characteristic for ZMRPSB function (setting parameters in italic) The impedance measurement within ZMRPSB function is performed by solving equation and equation (n = 1, 2, 3 for each corresponding phase L1, L2 and L3).
  • Page 133: Resistive Reach In Reverse Direction

    Section 7 1MRK 504 135-UEN A Impedance protection RLdInFw = kLdRFw·RLdOutFw (Equation 32) EQUATION1185 V2 EN where: kLdRFw is a settable multiplication factor less than 1 The slope of the load encroachment inner and outer boundary is defined by setting the parameter ArgLd.
  • Page 134: Reactive Reach In Forward And Reverse Direction

    Section 7 1MRK 504 135-UEN A Impedance protection argument of the tilted lines outside the load encroachment is the same as the tilted lines in the first quadrant. The distance between the inner and outer boundary is the same as for the load encroachment in reverse direction, that is DRv. 7.1.6.3 Reactive reach in forward and reverse direction The inner characteristic for the reactive reach in forward direction correspond to the...
  • Page 135 Section 7 1MRK 504 135-UEN A Impedance protection ZOUTL1 0-tP1 ZINL1 -loop -loop 0-tP2 DET-L1 ZOUTL2 ZOUTL3 detected 0-tW IEC05000113-2-en.vsd IEC05000113 V2 EN Figure 52: Detection of power swing in phase L1 ZOUTL1 ZOUT ZOUTL2 ZINL1 ZOUTL3 ZINL2 ZINL3 I0CHECK 10 ms BLKI02 INHIBIT...
  • Page 136: Operating And Inhibit Conditions

    Section 7 1MRK 504 135-UEN A Impedance protection 7.1.6.5 Operating and inhibit conditions Figure presents a simplified logic diagram for the Power swing detection function ZMRPSB. The load encroachment characteristic can be switched off by setting the parameter OperationLdCh = Off, but notice that the DFw and DRv will still be calculated from RLdOutFw and RLdOutRv.
  • Page 137: Functionality

    Section 7 1MRK 504 135-UEN A Impedance protection 7.2.2 Functionality The underimpedance protection for generators and transformers ZGCPDIS, has the offset mho characteristic as a three zone back-up protection for detection of phase-to- phase short circuits in transformers and generators. The full scheme three zones have independent measuring phase-to-phase loops and settings that gives high flexibility for all types of applications.
  • Page 138: Signals

    Section 7 1MRK 504 135-UEN A Impedance protection 7.2.4 Signals Table 55: ZGCPDIS Input signals Name Type Default Description GROUP Three phase group signal for current SIGNAL GROUP Three phase group signal for voltage SIGNAL BLOCK BOOLEAN Block of function BLKZ BOOLEAN Block due to Fuse Fail...
  • Page 139: Operation Principle

    Section 7 1MRK 504 135-UEN A Impedance protection Name Values (Range) Unit Step Default Description OpModeZ3 Disable-Zone Disable-Zone Operation mode of Zone 3 Enable-Zone Z3Fwd 0.005 - 3000.000 ohm/p 0.001 30.000 Forward reach setting for Zone 3 Z3Rev 0.005 - 3000.000 ohm/p 0.001 30.000...
  • Page 140: Basic Operation Characteristics

    Section 7 1MRK 504 135-UEN A Impedance protection Mho, zone3 Mho, zone2 Mho, zone1 IEC09000172_1_en.vsd IEC09000172 V1 EN Figure 56: Mho, offset mho characteristic Zone 3 can be equipped with a load encroachment function which cuts off a section of the characteristic when enabled.
  • Page 141: Theory Of Operation

    Section 7 1MRK 504 135-UEN A Impedance protection ImpedanceAng IEC10000176-2-en.vsd IEC10000176 V2 EN Figure 57: Mho, offset mho characteristic for Zone 1 with setting parameters Z1Fwd, Z1Rev and ImpedanceAng The three impedance zones can be time delayed individually by setting the parameter tZx (where x is 1-3 depending on selected zone).
  • Page 142 Section 7 1MRK 504 135-UEN A Impedance protection The characteristic for offset mho is a circle where two points on the circle are the setting parameters ZxFwd and ZxRev. The vector ZxFwd in the impedance plane has the settable angle ImpedanceAng and the angle for ZxRev is ImpedanceAng+180°. The condition for operation at phase-to-phase fault is that the angle β...
  • Page 143: Technical Data

    Section 7 1MRK 504 135-UEN A Impedance protection 7.2.7 Technical data Table 60: ZGCPDIS technical data Function Range or value Accuracy Number of zones Forward positive sequence impedance (0.005-3000.000) Ω/ ± 2.0% static accuracy phase Conditions: • Voltage range: (0.1-1.1) x U •...
  • Page 144: Function Block

    Section 7 1MRK 504 135-UEN A Impedance protection 7.3.3 Function block LEPDIS I3P* STCNDLE U3P* BLOCK IEC10000119-1-en.vsd IEC10000119 V1 EN Figure 59: LEPDIS function block 7.3.4 Signals Table 61: LEPDIS Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for voltage inputs...
  • Page 145: Load Encroachment

    Section 7 1MRK 504 135-UEN A Impedance protection The difference compared to the distance zone measuring function is in the combination of measuring quantities (currents and voltages) for different types of faults. The current start condition STCNDLE is based on the following criteria: Residual current criteria Load encroachment characteristic The STCNDLE output is non-directional.
  • Page 146: Simplified Logic Diagrams

    Section 7 1MRK 504 135-UEN A Impedance protection 7.3.6.2 Simplified logic diagrams Figure schematically presents the creation of the phase-to-phase operating conditions. L1L2 Block I ³ 0.05 & & & ³ × phmax STCNDLE Bool to & BLOCK integer & I <...
  • Page 147: Section 8 Current Protection

    Section 8 1MRK 504 135-UEN A Current protection Section 8 Current protection Instantaneous phase overcurrent protection 3-phase output PHPIOC 8.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Instantaneous phase overcurrent PHPIOC protection 3-phase output 3I>>...
  • Page 148: Settings

    Section 8 1MRK 504 135-UEN A Current protection 8.1.5 Settings Table 68: PHPIOC Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On IP>> 5 - 2500 Operate phase current level in % of IBase Table 69: PHPIOC Non group settings (basic) Name...
  • Page 149: Four Step Phase Overcurrent Protection 3-Phase Output Oc4Ptoc

    Section 8 1MRK 504 135-UEN A Current protection Function Range or value Accuracy Reset time 30 ms typically at 2 to 0 x I Critical impulse time 10 ms typically at 0 to 2 x I Operate time 10 ms typically at 0 to 5 x I Reset time 40 ms typically at 5 to 0 x I Critical impulse time...
  • Page 150: Function Block

    Section 8 1MRK 504 135-UEN A Current protection 8.2.3 Function block OC4PTOC I3P* TRIP U3P* BLOCK BLKST1 BLKST2 BLKST3 START BLKST4 STL1 STL2 STL3 2NDHARM IEC08000002-2-en.vsd IEC08000002 V2 EN Figure 63: OC4PTOC function block 8.2.4 Signals Table 72: OC4PTOC Input signals Name Type Default...
  • Page 151: Settings

    Section 8 1MRK 504 135-UEN A Current protection Name Type Description STL1 BOOLEAN Start signal from phase L1 STL2 BOOLEAN Start signal from phase L2 STL3 BOOLEAN Start signal from phase L3 ST2NDHRM BOOLEAN Second harmonic detected 8.2.5 Settings Table 74: OC4PTOC Group settings (basic) Name Values (Range)
  • Page 152 Section 8 1MRK 504 135-UEN A Current protection Name Values (Range) Unit Step Default Description DirMode3 Non-directional Directional mode of step 3 off / non- Non-directional directional / forward / reverse Forward Reverse I3> 5 - 2500 Phase current operate level for step3 in % of IBase 0.000 - 60.000 0.001...
  • Page 153: Monitored Data

    Section 8 1MRK 504 135-UEN A Current protection Table 76: OC4PTOC Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups MeasType Selection between DFT and RMS measurement 8.2.6 Monitored data...
  • Page 154 Section 8 1MRK 504 135-UEN A Current protection 4 step over current element faultState dirPh1Flt Direction faultState One element for each Element dirPh2Flt step START dirPh3Flt TRIP Harmonic harmRestrBlock Restraint Element enableDir Mode Selection enableStep1-4 DirectionalMode1-4 en05000740-2-en.vsd IEC05000740 V2 EN Figure 64: Functional overview of OC4PTOC The sampled analogue phase currents are processed in a pre-processing function...
  • Page 155 Section 8 1MRK 504 135-UEN A Current protection signal is common for all three phases and all steps. It shall be noted that the selection of measured value (DFT or RMS) do not influence the operation of directional part of OC4PTOC.
  • Page 156 Section 8 1MRK 504 135-UEN A Current protection IEC09000636_1_vsd IEC09000636 V1 EN Figure 65: Directional characteristic of the phase overcurrent protection 1 RCA = Relay characteristic angle 55° 2 ROA = Relay operating angle 80° 3 Reverse 4 Forward If no blockings are given the start signals will start the timers of the step. The time characteristic for step 1 and 4 can be chosen as definite time delay or inverse time characteristic.
  • Page 157: Second Harmonic Blocking Element

    Section 8 1MRK 504 135-UEN A Current protection Characteristx=DefTime a>b Ix> BLKSTx BLOCK Inverse Characteristx=Inverse STAGEx_DIR_Int DirModex=Off DirModex=Non-directional DirModex=Forward FORWARD_Int DirModex=Reverse REVERSE_Int IEC12000008.vsd IEC12000008.vsd IEC12000008 V2 EN Figure 66: Simplified logic diagram for OC4PTOC 8.2.8 Second harmonic blocking element A harmonic restrain of the Four step overcurrent protection function OC4PTOC can be chosen.
  • Page 158: Technical Data

    Section 8 1MRK 504 135-UEN A Current protection 8.2.9 Technical data Table 78: OC4PTOC technical data Function Setting range Accuracy lBase Operate current (5-2500)% of ± 1.0% of I at I ≤ I ± 1.0% of I at I > I lBase Reset ratio >...
  • Page 159: Functionality

    Section 8 1MRK 504 135-UEN A Current protection 8.3.2 Functionality The Instantaneous residual overcurrent protection EFPIOC has a low transient overreach and short tripping times to allow use for instantaneous earth-fault protection, with the reach limited to less than typical eighty percent of the transformer impedance at minimum source impedance.
  • Page 160: Monitored Data

    Section 8 1MRK 504 135-UEN A Current protection 8.3.6 Monitored data Table 83: EFPIOC Monitored data Name Type Values (Range) Unit Description REAL Residual current 8.3.7 Operation principle The sampled analog residual currents are pre-processed in a discrete Fourier filter (DFT) block.
  • Page 161: Identification

    Section 8 1MRK 504 135-UEN A Current protection 8.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Four step residual overcurrent EF4PTOC 51N/67N protection, zero or negative sequence direction IEC11000263 V1 EN 8.4.2 Functionality The four step residual overcurrent protection, zero or negative sequence direction (EF4PTOC) has a settable inverse or definite time delay independent for step 1 and 4 separately.
  • Page 162: Function Block

    Section 8 1MRK 504 135-UEN A Current protection 8.4.3 Function block EF4PTOC I3P* TRIP U3P* I3PPOL* I3PDIR* BLOCK BLKST1 START BLKST2 BLKST3 BLKST4 STFW STRV 2NDHARMD IEC08000004-2-en.vsd IEC08000004 V2 EN Figure 69: EF4PTOC function block 8.4.4 Signals Table 85: EF4PTOC Input signals Name Type Default...
  • Page 163: Settings

    Section 8 1MRK 504 135-UEN A Current protection Name Type Description BOOLEAN Start signal step 2 BOOLEAN Start signal step 3 BOOLEAN Start signal step 4 STFW BOOLEAN Forward directional start signal STRV BOOLEAN Reverse directional start signal 2NDHARMD BOOLEAN 2nd harmonic block signal 8.4.5 Settings...
  • Page 164 Section 8 1MRK 504 135-UEN A Current protection Name Values (Range) Unit Step Default Description Characterist1 ANSI Ext. inv. ANSI Def. Time Time delay curve type for step 1 ANSI Very inv. ANSI Norm. inv. ANSI Mod. inv. ANSI Def. Time L.T.E.
  • Page 165 Section 8 1MRK 504 135-UEN A Current protection Name Values (Range) Unit Step Default Description DirMode4 Non-directional Directional mode of step 4 (off, non- Non-directional directional, forward, reverse) Forward Reverse Characterist4 ANSI Ext. inv. ANSI Def. Time Time delay curve type for step 4 ANSI Very inv.
  • Page 166: Monitored Data

    Section 8 1MRK 504 135-UEN A Current protection 8.4.6 Monitored data Table 89: EF4PTOC Monitored data Name Type Values (Range) Unit Description STDIR INTEGER 3=Both Fault direction coded as 1=Forward integer 2=Reverse 0=No direction REAL Operating current level UPol REAL Polarizing voltage level IPol REAL...
  • Page 167: Internal Polarizing

    Section 8 1MRK 504 135-UEN A Current protection • parallel connection of current instrument transformers in all three phases (Holm-Green connection). • one single core balance, current instrument transformer (cable CT). • one single current instrument transformer located between power system star point and earth (that is, current transformer located in the star point of a star connected transformer winding).
  • Page 168 Section 8 1MRK 504 135-UEN A Current protection directly measured (when a dedicated VT input of the IED is connected in PCM600 to the fourth analog input of the pre-processing block connected to EF4PTOC function input U3P). This dedicated IED VT input shall be then connected to open delta winding of a three phase main VT.
  • Page 169 Section 8 1MRK 504 135-UEN A Current protection Current polarizing When current polarizing is selected the function will use an external residual current ) or the calculated negative sequence current (I ) as polarizing quantity IPol. The user can select the required current. The residual current can be: directly measured (when a dedicated CT input of the IED is connected in PCM600 to the fourth analog input of the pre-processing block connected to...
  • Page 170: External Polarizing For Earth-Fault Function

    Section 8 1MRK 504 135-UEN A Current protection order to calculate equivalent polarizing voltage UIPol in accordance with the following formula: × + × × UIPol IPol (RNPol j XNPol) IPol (Equation 47) EQUATION1877 V2 EN which will be then used, together with the phasor of the operating directional current, in order to determine the direction to the earth fault (Forward/Reverse).
  • Page 171: Four Residual Overcurrent Steps

    Section 8 1MRK 504 135-UEN A Current protection Four residual overcurrent steps. Directional supervision element for residual overcurrent steps with integrated directional comparison step for communication based earth-fault protection schemes (permissive or blocking). Second harmonic blocking element with additional feature for sealed-in blocking during switching of parallel transformers.
  • Page 172: Directional Supervision Element With Integrated Directional Comparison Function

    Section 8 1MRK 504 135-UEN A Current protection Characteristn=DefTime TRINx a>b INx> STINx BLKSTx BLOCK Inverse 2ndH_BLOCK_Int Characteristn=Inverse HarmRestrainx=Disabled Characteristn= Inverse will be valid STEPx_DIR_Int DirModex=Off for n = 1 and 4 DirModex=Non-directional DirModex=Forward FORWARD_Int DirModex=Reverse REVERSE_Int IEC09000638_3_en.vsd IEC09000638 V3 EN Figure 70: Simplified logic diagram for residual overcurrent The protection can be completely blocked from the binary input BLOCK.
  • Page 173 Section 8 1MRK 504 135-UEN A Current protection Operating area STRV 0.6 * IN>DIR Characteristic for reverse release of measuring steps -RCA -85 deg Characteristic for STRV 40% of IN>DIR RCA +85 deg = -3U 65° -RCA +85 deg RCA -85 deg Characteristic for forward release of measuring steps IN>DIR...
  • Page 174 Section 8 1MRK 504 135-UEN A Current protection BLKTR Characteristx=DefTime a>b Ix> BLKSTx BLOCK Inverse Characteristx=Inverse STAGEx_DIR_Int DirModex=Off DirModex=Non-directional DirModex=Forward FORWARD_Int DirModex=Reverse REVERSE_Int SimplifiedlogicdiagramforresidualOC IEC11000281-1-en.vsd stagex-IEC11000281.vsd IEC11000281 V1 EN Figure 72: Operating characteristic for earth-fault directional element using the zero sequence components Technical manual...
  • Page 175 Section 8 1MRK 504 135-UEN A Current protection Operating area STRV 0.6 * I>DIR Characteristic for reverse release of measuring steps -RCA -85 deg Characteristic for STRV 40% of RCA +85 deg I>DIR = -U 65 deg -RCA +85 deg RCA -85 deg Characteristic for forward release of measuring steps...
  • Page 176: Second Harmonic Blocking Element

    Section 8 1MRK 504 135-UEN A Current protection These signals shall be used for communication based earth-fault teleprotection communication schemes (permissive or blocking). Simplified logic diagram for directional supervision element with integrated directional comparison step is shown in figure 74: IopDir STRV a>b...
  • Page 177: Technical Data

    Section 8 1MRK 504 135-UEN A Current protection BLOCK a>b 0.07*IBase a>b Extract second harmonic current a>b component Extract fundamental current component 2ndHarmStab t=70ms 2ndH_BLOCK_Int BlkParTransf=On a>b UseStartValue IN1> IN2> IN3> IN4> IEC13000015-1-en.vsd IEC13000015 V1 EN Figure 75: Second harmonic blocking 8.4.9 Technical data Table 90:...
  • Page 178: Thermal Overload Protection, Two Time Constants Trpttr

    Section 8 1MRK 504 135-UEN A Current protection Function Range or value Accuracy UBase Minimum polarizing voltage, Zero (1–100)% of ± 0.5% of U sequence UBase Minimum polarizing voltage, (1–100)% of ± 0.5% of U Negative sequence IBase Minimum polarizing current, Zero (2–100)% of ±1.0% of I sequence...
  • Page 179: Function Block

    Section 8 1MRK 504 135-UEN A Current protection The thermal overload protection estimates the internal heat content of the transformer/ generator (temperature) continuously. This estimation is made by using a thermal model of the transformer/generator with two time constants, which is based on current measurement.
  • Page 180: Settings

    Section 8 1MRK 504 135-UEN A Current protection 8.5.5 Settings Table 93: TRPTTR Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On IRef 10.0 - 1000.0 100.0 Reference current in % of IBase IBase1 30.0 - 250.0 100.0 Base current IBase1 without cooling input...
  • Page 181: Monitored Data

    Section 8 1MRK 504 135-UEN A Current protection 8.5.6 Monitored data Table 95: TRPTTR Monitored data Name Type Values (Range) Unit Description TTRIP REAL Estimated time to trip (in min) TTRIPCAL INTEGER Calculated time status to trip: not active/long time/ active TRESCAL INTEGER...
  • Page 182 Section 8 1MRK 504 135-UEN A Current protection > Q final (Equation 50) EQUATION1172 V1 EN æ ö Q = Q × ç ÷ final è ø (Equation 51) EQUATION1173 V1 EN < Q final (Equation 52) EQUATION1174 V1 EN Q = Q ×...
  • Page 183 Section 8 1MRK 504 135-UEN A Current protection the temperature of the object is above the set lockout release temperature setting ResLo. The time to lockout release is calculated, That is, a calculation of the cooling time to a set value. æ...
  • Page 184 Section 8 1MRK 504 135-UEN A Current protection Final Temp START > TripTemp actual heat comtent Calculation of heat content Calculation of final temperature ALARM1 Actual Temp > Alarm1,Alarm2 ALARM2 Temp Current base used TRIP Actual Temp > TripTemp LOCKOUT Binary input: Forced cooling Management of...
  • Page 185: Technical Data

    Section 8 1MRK 504 135-UEN A Current protection 8.5.8 Technical data Table 96: TRPTTR technical data Function Range or value Accuracy IBase Base current 1 and 2 (30–250)% of ± 1.0% of I Operate time: = load current before overload IEC 60255–8, ±5% + 200 ms occurs Time constant τ...
  • Page 186: Function Block

    Section 8 1MRK 504 135-UEN A Current protection Contact check criteria can be used where the fault current through the breaker is small. Breaker failure protection, 3-phase activation and output (CCRBRF) current criteria can be fulfilled by one or two phase currents the residual current, or one phase current plus residual current.
  • Page 187: Settings

    Section 8 1MRK 504 135-UEN A Current protection 8.6.5 Settings Table 99: CCRBRF Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On FunctionMode Current Current Detection principle for back-up trip Contact Current&Contact BuTripMode 2 out of 4 1 out of 3 Back-up trip mode 1 out of 3...
  • Page 188: Operation Principle

    Section 8 1MRK 504 135-UEN A Current protection 8.6.7 Operation principle Breaker failure protection, 3-phase activation and output CCRBRF is initiated from protection trip command, either from protection functions within the IED or from external protection devices. The start signal is general for all three phases. A re-trip attempt can be made after a set time delay.
  • Page 189 Section 8 1MRK 504 135-UEN A Current protection IP> a>b FunctionMode Current Reset L1 Contact Time out L1 Current and Contact Current High L1 BFP Started L1 CB Closed L1 a>b I>BlkCont CBCLDL1 Contact Closed L1 IEC09000977-2-en.vsd IEC09000977 V2 EN Figure 80: Simplified logic scheme of the CCRBRF, CB position evaluation TRRETL3...
  • Page 190: Technical Data

    Section 8 1MRK 504 135-UEN A Current protection BUTripMode 1 out of 3 2 out of 4 1 out of 4 Current High L1 BFP Started L1 a>b IN> Contact Closed L1 Current High L2 From other Current High L3 Backup Time Out L1 phases Current High L1...
  • Page 191: Pole Discordance Protection Ccrpld

    Section 8 1MRK 504 135-UEN A Current protection Function Range or value Accuracy Timers (0.000-60.000) s ± 0.5% ±10 ms Operate time for 20 ms typically current detection Reset time for current 10 ms maximum detection Pole discordance protection CCRPLD 8.7.1 Identification Function description...
  • Page 192: Signals

    Section 8 1MRK 504 135-UEN A Current protection 8.7.4 Signals Table 104: CCRPLD Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL BLOCK BOOLEAN Block of function CLOSECMD BOOLEAN Close order to CB OPENCMD BOOLEAN Open order to CB EXTPDIND...
  • Page 193: Monitored Data

    Section 8 1MRK 504 135-UEN A Current protection 8.7.6 Monitored data Table 108: CCRPLD Monitored data Name Type Values (Range) Unit Description IMin REAL Lowest phase current IMax REAL Highest phase current 8.7.7 Operation principle The detection of pole discordance can be made in two different ways. If the contact based function is used an external logic can be made by connecting the auxiliary contacts of the circuit breaker so that a pole discordance is indicated, see figure 84.
  • Page 194: Pole Discordance Signaling From Circuit Breaker

    Section 8 1MRK 504 135-UEN A Current protection ContSel EXTPDIND tTrip 150 ms TRIP CLOSECMD tTrip+200 ms OPENCMD CurrSel Unsymmetrical current detection IEC08000014-2-en.vsd IEC08000014 V2 EN Figure 85: Simplified block diagram of pole discordance function - contact and current based The pole discrepancy protection is blocked if the input signal BLOCK is high.
  • Page 195: Technical Data

    Section 8 1MRK 504 135-UEN A Current protection • any phase current is lower than CurrUnsymLevel of the highest current in the three phases. • the highest phase current is greater than CurrRelLevel of IBase. If these conditions are true, an unsymmetrical condition is detected. This detection is enabled to generate a trip after a set time delay tTrip if the detection occurs in the next 200 ms after the circuit breaker has received a command to open trip or close and if the unbalance persists.
  • Page 196: Directional Overpower Protection Goppdop

    Section 8 1MRK 504 135-UEN A Current protection 8.8.2 Directional overpower protection GOPPDOP 8.8.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Directional overpower protection GOPPDOP P > DOCUMENT172362-IMG158942 V2 EN 8.8.2.2 Function block GOPPDOP I3P* TRIP U3P*...
  • Page 197: Settings

    Section 8 1MRK 504 135-UEN A Current protection Name Type Description START1 BOOLEAN Start signal from stage 1 START2 BOOLEAN Start signal from stage 2 REAL Active Power PPERCENT REAL Active power in % of calculated power base value REAL Reactive power QPERCENT REAL...
  • Page 198: Monitored Data

    Section 8 1MRK 504 135-UEN A Current protection 8.8.2.5 Monitored data Table 115: GOPPDOP Monitored data Name Type Values (Range) Unit Description REAL Active Power PPERCENT REAL Active power in % of calculated power base value REAL MVAr Reactive power QPERCENT REAL Reactive power in % of...
  • Page 199: Signals

    Section 8 1MRK 504 135-UEN A Current protection 8.8.3.3 Signals Table 116: GUPPDUP Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLKST1 BOOLEAN Block of step 1...
  • Page 200: Monitored Data

    Section 8 1MRK 504 135-UEN A Current protection Table 119: GUPPDUP Group settings (advanced) Name Values (Range) Unit Step Default Description 0.00 - 0.99 0.01 0.00 Low pass filter coefficient for power measurement, U and I Table 120: GUPPDUP Non group settings (basic) Name Values (Range) Unit...
  • Page 201 Section 8 1MRK 504 135-UEN A Current protection Chosen current phasors Complex Derivation of S(angle) TRIP1 S(angle) < S(composant) power Chosen voltage Power1 in Char angle calculation phasors START1 TRIP2 S(angle) < Power2 START2 P = POWRE Q = POWIM IEC09000018-2-en.vsd IEC09000018 V2 EN Figure 88:...
  • Page 202: Low Pass Filtering

    Section 8 1MRK 504 135-UEN A Current protection Set value: Mode Formula used for complex power calculation = × × (Equation 63) EQUATION1703 V1 EN = × × (Equation 64) EQUATION1704 V1 EN = × × (Equation 65) EQUATION1705 V1 EN The active and reactive power is available from the function and can be used for monitoring and fault recording.
  • Page 203: Technical Data

    Section 8 1MRK 504 135-UEN A Current protection = × × 1 k S Calculated (Equation 66) EQUATION1959 V1 EN Where is a new measured value to be used for the protection function is the measured value given from the function in previous execution cycle is the new calculated value in the present execution cycle Calculated is settable parameter by the end user which influence the filter properties...
  • Page 204: Functionality

    Section 8 1MRK 504 135-UEN A Current protection 8.9.2 Functionality Negative sequence based overcurrent function DNSPTOC is typically used as sensitive earth-fault protection of power lines, where incorrect zero sequence polarization may result from mutual induction between two or more parallel lines. Additionally, it is applied in applications on cables, where zero sequence impedance depends on the fault current return paths, but the cable negative sequence impedance is practically constant.
  • Page 205: Settings

    Section 8 1MRK 504 135-UEN A Current protection Table 125: DNSPTOC Output signals Name Type Description TRIP BOOLEAN General trip signal TROC1 BOOLEAN Trip signal from step 1 (OC1) TROC2 BOOLEAN Trip signal from step 2 (OC2) START BOOLEAN General start signal STOC1 BOOLEAN Start signal from step 1 (OC1)
  • Page 206: Monitored Data

    Section 8 1MRK 504 135-UEN A Current protection Name Values (Range) Unit Step Default Description CurrMult_OC2 1.0 - 10.0 Multiplier for current operate level for step 2 (OC2) tDef_OC2 0.00 - 6000.00 0.01 0.50 Independent (definite) time delay for step 2 (OC2) DirMode_OC2 Non-directional...
  • Page 207: Technical Data

    Section 8 1MRK 504 135-UEN A Current protection 8.9.8 Technical data Table 129: DNSPTOC Technical data Function Range or value Accuracy IBase Operate current (2.0 - 200.0) % of ± 1.0% of I at I <I ± 1.0% of I at I > I Reset ratio >...
  • Page 209: Section 9 Voltage Protection

    Section 9 1MRK 504 135-UEN A Voltage protection Section 9 Voltage protection Two step undervoltage protection UV2PTUV 9.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Two step undervoltage protection UV2PTUV 3U< SYMBOL-R-2U-GREATER-THAN V2 EN 9.1.2 Functionality Undervoltages can occur in the power system during faults or abnormal conditions.
  • Page 210: Signals

    Section 9 1MRK 504 135-UEN A Voltage protection 9.1.4 Signals Table 130: UV2PTUV Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLKST1 BOOLEAN Block of step 1 BLKST2 BOOLEAN Block of step 2 Table 131:...
  • Page 211: Monitored Data

    Section 9 1MRK 504 135-UEN A Voltage protection Name Values (Range) Unit Step Default Description OperationStep2 Enable execution of step 2 OpMode2 1 out of 3 1 out of 3 Number of phases required to operate (1 2 out of 3 of 3, 2 of 3, 3 of 3) from step 2 3 out of 3 U2<...
  • Page 212: Measurement Principle

    Section 9 1MRK 504 135-UEN A Voltage protection UBase kV < ⋅ (Equation 67) EQUATION1429 V2 EN and operation for phase-to-phase voltage under: < × (%) UBase(kV) (Equation 68) EQUATION1990 V1 EN When phase-to-earth voltage measurement is selected the function automatically introduces division of the base value by the square root of three.
  • Page 213: Blocking

    Section 9 1MRK 504 135-UEN A Voltage protection The lowest voltage is always used for the inverse time delay integration. The details of the different inverse time characteristics are shown in section 21.3 "Inverse time characteristics". Voltage IDMT Voltage Time IEC12000186-1-en.vsd IEC12000186 V1 EN Figure 91:...
  • Page 214: Technical Data

    Section 9 1MRK 504 135-UEN A Voltage protection UL1 or UL12 ST1L1 Comparator Phase 1 U < U1< Voltage Phase Selector ST1L2 UL2 or UL23 Comparator OpMode1 Phase 2 U < U1< 1 out of 3 ST1L3 2 out of 3 Start Phase 3 3 out of 3...
  • Page 215: Two Step Overvoltage Protection Ov2Ptov

    Section 9 1MRK 504 135-UEN A Voltage protection Function Range or value Accuracy Definite time delay, (0.00 - 6000.00) s ± 0.5% ± 25 ms step 1 Definite time delays, (0.000-60.000) s ± 0.5% ±25 ms step 2 Minimum operate (0.000–60.000) s ±...
  • Page 216: Function Block

    Section 9 1MRK 504 135-UEN A Voltage protection 9.2.3 Function block OV2PTOV U3P* TRIP BLOCK BLKST1 BLKST2 START ST1L1 ST1L2 ST1L3 IEC09000278-2-en.vsd IEC09000278 V2 EN Figure 93: OV2PTOV function block 9.2.4 Signals Table 136: OV2PTOV Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs...
  • Page 217: Settings

    Section 9 1MRK 504 135-UEN A Voltage protection 9.2.5 Settings Table 138: OV2PTOV Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On OperationStep1 Enable execution of step 1 Characterist1 Definite time Definite time Selection of time delay curve type for step Inverse curve A Inverse curve B Inverse curve C...
  • Page 218: Operation Principle

    Section 9 1MRK 504 135-UEN A Voltage protection 9.2.7 Operation principle Two step overvoltage protection OV2PTOV is used to detect high power system voltage. OV2PTOV has two steps with separate time delays. If one-, two- or three- phase voltages increase above the set value, a corresponding START signal is issued. OV2PTOV can be set to START/TRIP, based on 1 out of 3, 2 out of 3 or 3 out of 3 of the measured voltages, being above the set point.
  • Page 219: Time Delay

    Section 9 1MRK 504 135-UEN A Voltage protection 9.2.7.2 Time delay The time delay for step 1 can be either definite time delay (DT) or inverse time delay (IDMT). Step 2 is always definite time delay (DT). For the inverse time delay three different modes are available: •...
  • Page 220: Blocking

    Section 9 1MRK 504 135-UEN A Voltage protection Voltage IDMT Voltage Time IEC05000016-2-en.vsd IEC05000016 V2 EN Figure 94: Voltage used for the inverse time characteristic integration A TRIP requires that the overvoltage condition continues for at least the user set time delay.
  • Page 221 Section 9 1MRK 504 135-UEN A Voltage protection Comparator ST1L1 UL1 or UL12 U > U1> Phase 1 Voltage Phase Selector ST1L2 Comparator OpMode1 UL2 or UL23 Phase 2 U > U1> 1 out of 3 ST1L3 2 outof 3 Start Phase 3 3 out of 3...
  • Page 222: Technical Data

    Section 9 1MRK 504 135-UEN A Voltage protection 9.2.8 Technical data Table 141: OV2PTOV technical data Function Range or value Accuracy UBase Operate voltage, (1-200)% of ± 0.5% of U at U < U step 1 and 2 ± 0.5% of U at U > U Reset ratio >98% Inverse time...
  • Page 223: Function Block

    Section 9 1MRK 504 135-UEN A Voltage protection ROV2PTOV has two voltage steps, where step 1 can be set as inverse or definite time delayed. Step 2 is always definite time delayed. 9.3.3 Function block ROV2PTOV U3P* TRIP BLOCK BLKST1 BLKST2 START IEC09000273_1_en.vsd...
  • Page 224: Monitored Data

    Section 9 1MRK 504 135-UEN A Voltage protection Name Values (Range) Unit Step Default Description U1> 1 - 200 Voltage start value (DT & IDMT) in % of UBase for step 1 0.00 - 6000.00 0.01 5.00 Definite time delay of step 1 t1Min 0.000 - 60.000 0.001...
  • Page 225: Measurement Principle

    Section 9 1MRK 504 135-UEN A Voltage protection 9.3.7.1 Measurement principle The residual voltage is measured continuously, and compared with the set values, U1> and U2>. To avoid oscillations of the output START signal, a hysteresis has been included. 9.3.7.2 Time delay 9.3.7.3 Blocking...
  • Page 226 Section 9 1MRK 504 135-UEN A Voltage protection Comparator Phase 1 UN > U1> Start START & Trip Output Logic Time integrator TRIP or Timer t1 Step 1 Comparator Phase 1 UN > U2> Start START & Trip START Output Logic Timer TRIP...
  • Page 227: Technical Data

    Section 9 1MRK 504 135-UEN A Voltage protection 9.3.8 Technical data Table 147: ROV2PTOV technical data Function Range or value Accuracy UBase Operate voltage, (1-200)% of ± 0.5% of U at U < U step 1 ± 0.5% of U at U > U UBase Operate voltage, (1–100)% of...
  • Page 228: Function Block

    Section 9 1MRK 504 135-UEN A Voltage protection adjacent parts in a relatively short time. The function has settable inverse operating curves and independent alarm stages. 9.4.3 Function block OEXPVPH U3P* TRIP BLOCK START RESET ALARM IEC09000008-2-en.vsd IEC09000008 V2 EN Figure 98: OEXPVPH function block 9.4.4...
  • Page 229: Monitored Data

    Section 9 1MRK 504 135-UEN A Voltage protection Table 151: OEXPVPH Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups VoltConn Pos Seq Pos Seq Selection of measured voltage UL1L2 UL2L3...
  • Page 230 Section 9 1MRK 504 135-UEN A Voltage protection × × × × 4 44 f n Bmax A (Equation 76) EQUATION898 V2 EN The relative excitation M is therefore according to equation 77. M p.u. = ( ) ( ) (Equation 77) IECEQUATION2296 V1 EN Disproportional variations in quantities E and f may give rise to core overfluxing.
  • Page 231: Measured Voltage

    Section 9 1MRK 504 135-UEN A Voltage protection V Hz > £ (Equation 79) IECEQUATION2297 V2 EN where: V/Hz> is the maximum continuously allowed voltage at no load, and rated frequency. V/Hz> is a setting parameter. The setting range is 100% to 180%. If the user does not know exactly what to set, then the default value for V/Hz>...
  • Page 232: Operate Time Of The Overexcitation Protection

    Section 9 1MRK 504 135-UEN A Voltage protection 9.4.7.2 Operate time of the overexcitation protection The operate time of OEXPVPH is a function of the relative overexcitation. The so called IEEE law approximates an inverse-square law and has been chosen based on analysis of the various transformer overexcitation capability characteristics.
  • Page 233 Section 9 1MRK 504 135-UEN A Voltage protection delay in s 1800 under - inverse delay law excitation overexcitation tMin - V/Hz> Overexcitation M-V/Hz> M=V/Hz> Excitation M V/Hz> E (only if f = fr = const) IEC09000114-1-en.vsd IEC09000114 V1 EN Figure 99: Restrictions imposed on inverse delays by A definite maximum time of 1800 seconds is used to limit the operate time at low...
  • Page 234: Cooling

    Section 9 1MRK 504 135-UEN A Voltage protection IEEE OVEREXCITATION CURVES Time (s) 1000 kForIEEE kForIEEE kForIEEE kForIEEE kForIEEE kForIEEE kForIEEE kForIEEE kForIEEE kForIEEE kForIEEE kForIEEE OVEREXCITATION IN % (M-Emaxcont)*100) IEC09000115-1-en.vsd IEC09000115 V1 EN Figure 100: Delays inversely proportional to the square of the overexcitation The critical value of excitation M is determined via OEXPVPH setting V/Hz>>.
  • Page 235: Overexcitation Protection Function Measurands

    Section 9 1MRK 504 135-UEN A Voltage protection applied, with a time constant of 20 minutes. This means that if the voltage and frequency return to normal values (no more overexcitation), the normal temperature is assumed to be reached after approximately 5 times the time constant of 20 minutes. If an overexcitation condition would return before that, the time to trip will be shorter than it would be otherwise.
  • Page 236: Logic Diagram

    Section 9 1MRK 504 135-UEN A Voltage protection 9.4.7.6 Logic diagram BLOCK AlarmL evel ALARM & t>tAlarm tAlarm M>V/Hz> 100 ms t>tMin TRIP & V/Hz> tMin Calc ulation of inte rnal induced (Ei / f) kForIEEE 1 voltage Ei (Ur / fr) 1800 s M>V/Hz>>...
  • Page 237: Section 10 Frequency Protection

    Section 10 1MRK 504 135-UEN A Frequency protection Section 10 Frequency protection 10.1 Underfrequency protection SAPTUF 10.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Underfrequency protection SAPTUF f < SYMBOL-P V1 EN 10.1.2 Functionality Underfrequency occurs as a result of a lack of sufficient generation in the network.
  • Page 238: Signals

    Section 10 1MRK 504 135-UEN A Frequency protection 10.1.4 Signals Table 154: SAPTUF Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function Table 155: SAPTUF Output signals Name Type Description TRIP BOOLEAN...
  • Page 239: Measurement Principle

    Section 10 1MRK 504 135-UEN A Frequency protection voltage is lower than the set blocking voltage in the preprocessing function, the function is blocked and no START or TRIP signal is issued. 10.1.7.1 Measurement principle The frequency measuring element continuously measures the frequency of the positive sequence voltage and compares it to the setting StartFrequency.
  • Page 240: Blocking

    Section 10 1MRK 504 135-UEN A Frequency protection When the measured frequency returns to the level corresponding to the setting RestoreFreq, a 100ms pulse is given on the output RESTORE after a settable time delay (tRestore). 10.1.7.3 Blocking It is possible to block underfrequency protection SAPTUF completely, by binary input signal: BLOCK: blocks all outputs...
  • Page 241: Identification

    Section 10 1MRK 504 135-UEN A Frequency protection 10.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Overfrequency protection SAPTOF f > SYMBOL-O V1 EN 10.2.2 Functionality Overfrequency protection function SAPTOF is applicable in all situations, where reliable detection of high fundamental power system frequency is needed.
  • Page 242: Settings

    Section 10 1MRK 504 135-UEN A Frequency protection Table 160: SAPTOF Output signals Name Type Description TRIP BOOLEAN General trip signal START BOOLEAN General start signal BLKDMAGN BOOLEAN Measurement blocked due to low amplitude 10.2.5 Settings Table 161: SAPTOF Group settings (basic) Name Values (Range) Unit...
  • Page 243: Time Delay

    Section 10 1MRK 504 135-UEN A Frequency protection percent of the global parameter UBase. To avoid oscillations of the output START signal, a hysteresis has been included. BLOCK BLOCK BLKDMAGN freqNotValid Start & Trip Output Logic START START Definite Time Delay Frequency Comparator f >...
  • Page 244: Technical Data

    Section 10 1MRK 504 135-UEN A Frequency protection BLOCK BLKTRIP BLOCK BLKDMAGN Comparator U < IntBlockLevel Start & Trip Voltage Time integrator Output Logic START START Definite Time Delay Frequency Comparator f > StartFrequency TimeDlyOperate TRIP TimeDlyReset TRIP en05000735.vsd IEC05000735 V1 EN Figure 107: Schematic design of overfrequency protection SAPTOF 10.2.8...
  • Page 245: Identification

    Section 10 1MRK 504 135-UEN A Frequency protection 10.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Rate-of-change frequency protection SAPFRC df/dt > < SYMBOL-N V1 EN 10.3.2 Functionality The rate-of-change frequency protection function SAPFRC gives an early indication of a main disturbance in the system.
  • Page 246: Settings

    Section 10 1MRK 504 135-UEN A Frequency protection 10.3.5 Settings Table 166: SAPFRC Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On StartFreqGrad -10.00 - 10.00 Hz/s 0.01 0.50 Frequency gradient start value, the sign defines direction tTrip 0.000 - 60.000...
  • Page 247: Design

    Section 10 1MRK 504 135-UEN A Frequency protection fulfilled again within a defined reset time, the START output is reset after the reset time has elapsed. After an issue of the TRIP output signal, the RESTORE output of SAPFRC is set after a time delay (tRestore), when the measured frequency has returned to the level corresponding to RestoreFreq.
  • Page 248: Technical Data

    Section 10 1MRK 504 135-UEN A Frequency protection 10.3.7 Technical data Table 167: SAPFRC technical data Function Range or value Accuracy Operate value, start function (-10.00-10.00) Hz/s ± 10.0 mHz/s Operate value, restore (45.00 - 65.00) Hz ± 2.0 mHz enable frequency Timers (0.000 - 60.000) s...
  • Page 249: Section 11 Secondary System Supervision

    Section 11 1MRK 504 135-UEN A Secondary system supervision Section 11 Secondary system supervision 11.1 Fuse failure supervision SDDRFUF 11.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Fuse failure supervision SDDRFUF 11.1.2 Functionality The aim of the fuse failure supervision function SDDRFUF is to block voltage measuring functions at failures in the secondary circuits between the voltage transformer and the IED in order to avoid inadvertent operations that otherwise might occur.
  • Page 250: Function Block

    Section 11 1MRK 504 135-UEN A Secondary system supervision 11.1.3 Function block SDDRFUF I3P* BLKZ U3P* BLKU BLOCK CBCLOSED DLD1PH MCBOP DLD3PH DISCPOS IEC08000220 V1 EN Figure 110: SDDRFUF function block 11.1.4 Signals Table 168: SDDRFUF Input signals Name Type Default Description GROUP...
  • Page 251: Settings

    Section 11 1MRK 504 135-UEN A Secondary system supervision 11.1.5 Settings Table 170: SDDRFUF Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On OpMode UZsIZs Operating mode selection UNsINs UZsIZs UZsIZs OR UNsINs UZsIZs AND UNsINs OptimZsNs 3U0>...
  • Page 252: Monitored Data

    Section 11 1MRK 504 135-UEN A Secondary system supervision 11.1.6 Monitored data Table 172: SDDRFUF Monitored data Name Type Values (Range) Unit Description REAL Magnitude of zero sequence current REAL Magnitude of negative sequence current REAL Magnitude of zero sequence voltage REAL Magnitude of negative sequence voltage...
  • Page 253: Delta Current And Delta Voltage Detection

    Section 11 1MRK 504 135-UEN A Secondary system supervision Sequence Detection 3I0< CurrZeroSeq Zero sequence filter 100 ms CurrNegSeq a>b Negative sequence filter FuseFailDetZeroSeq 100 ms a>b 3I2< FuseFailDetNegSeq 3U0> VoltZeroSeq Zero sequence a>b filter VoltNegSeq Negative sequence a>b filter 3U2>...
  • Page 254 Section 11 1MRK 504 135-UEN A Secondary system supervision • The magnitude of the phase current in the same phase is higher than the setting IPh> • The circuit breaker is closed (CBCLOSED = True) The first criterion means that detection of failure in one phase together with a current in the same phase greater than 50P will set the output.
  • Page 255 Section 11 1MRK 504 135-UEN A Secondary system supervision DUDI Detection DUDI detection Phase 1 One cycle delay |DI| a>b DI< One cycle delay |DU| a>b DU> 20 ms 1.5 cycle a>b UPh> DUDI detection Phase 2 Same logic as for phase 1 DUDI detection Phase 3 Same logic as for phase 1 a<b...
  • Page 256: Dead Line Detection

    Section 11 1MRK 504 135-UEN A Secondary system supervision 11.1.7.3 Dead line detection A simplified diagram for the functionality is found in figure 113. A dead phase condition is indicated if both the voltage and the current in one phase is below their respective setting values UDLD<...
  • Page 257 Section 11 1MRK 504 135-UEN A Secondary system supervision • UZsIZs OR UNsINs. Both negative and zero sequence is activated and working in parallel (OR-condition for operation). • UZsIZs AND UNsINs. Both negative and zero sequence is activated and working in series (AND-condition for operation).
  • Page 258 Section 11 1MRK 504 135-UEN A Secondary system supervision The input signal DISCPOS is supposed to be connected via a terminal binary input to the N.C. auxiliary contact of the line disconnector. The DISCPOS signal sets the output signal BLKU in order to block the voltage related functions when the line disconnector is open.
  • Page 259 Section 11 1MRK 504 135-UEN A Secondary system supervision Fuse failure detection Main logic TEST TEST ACTIVE BlocFuse = Yes intBlock BLOCK All UL < USealIn< SealIn = On Any UL < UsealIn< FuseFailDetDUDI OpDUDI = On FuseFailDetZeroSeq FuseFailDetNegSeq UNsINs UZsIZs UZsIZs OR UNsINs OpMode...
  • Page 260: Technical Data

    Section 11 1MRK 504 135-UEN A Secondary system supervision 11.1.8 Technical data Table 173: SDDRFUF technical data Function Range or value Accuracy Operate voltage, zero sequence (1-100)% of UBase ± 1.0% of U Operate current, zero sequence (1–100)% of IBase ±...
  • Page 261: Signals

    Section 11 1MRK 504 135-UEN A Secondary system supervision 11.2.4 Signals Table 174: TCSSCBR Input signals Name Type Default Description TCS_STATE BOOLEAN Trip circuit fail indication from I/O-card BLOCK BOOLEAN Block of function Table 175: TCSSCBR Output signals Name Type Description ALARM BOOLEAN...
  • Page 262: Technical Data

    Section 11 1MRK 504 135-UEN A Secondary system supervision To protect the trip circuit supervision circuits in the IED, the output contacts are provided with parallel transient voltage suppressors. The breakdown voltage of these suppressors is 400 +/– 20 V DC. Timer Once activated, the timer runs until the set value tDelay is elapsed.
  • Page 263: Section 12 Control

    Section 12 1MRK 504 135-UEN A Control Section 12 Control 12.1 Apparatus control 12.1.1 Functionality The apparatus control function APC8 for up to 8 apparatuses is used for control and supervision of circuit breakers, disconnectors and earthing switches within a bay. Permission to operate is given after evaluation of conditions from other functions such as interlocking, synchrocheck, operator place selection and external or internal blockings.
  • Page 264: Function Block

    Section 12 1MRK 504 135-UEN A Control 12.1.2.3 Function block SCSWI BLOCK EXE_OP PSTO EXE_CL L_SEL SELECTED L_OPEN START_SY L_CLOSE POSITION AU_OPEN OPENPOS AU_CLOSE CLOSEPOS BL_CMD CMD_BLK RES_EXT L_CAUSE SY_INPRO POS_INTR SYNC_OK XOUT EN_OPEN EN_CLOSE XPOS* IEC09000087_1_en.vsd IEC09000087 V1 EN Figure 117: SCSWI function block 12.1.2.4...
  • Page 265: Settings

    Section 12 1MRK 504 135-UEN A Control Name Type Description CLOSEPOS BOOLEAN Closed position indication CMD_BLK BOOLEAN Commands are blocked L_CAUSE INTEGER Latest value of the error indication during command POS_INTR BOOLEAN Stopped in intermediate position XOUT BOOLEAN Execution information to XCBR/XSWI 12.1.2.5 Settings Table 180:...
  • Page 266: Settings

    Section 12 1MRK 504 135-UEN A Control Table 182: SXCBR Output signals Name Type Description XPOS GROUP SIGNAL Group connection to CSWI EXE_OP BOOLEAN Executes the command for open direction EXE_CL BOOLEAN Executes the command for close direction OP_BLKD BOOLEAN Indication that the function is blocked for open commands CL_BLKD...
  • Page 267: Settings

    Section 12 1MRK 504 135-UEN A Control Name Type Default Description BL_CLOSE BOOLEAN Signal to block the close command BL_UPD BOOLEAN Steady signal for block of the position updating POSOPEN BOOLEAN Signal for open position of apparatus from I/O POSCLOSE BOOLEAN Signal for close position of apparatus from I/O TR_OPEN...
  • Page 268: Bay Control Qcbay

    Section 12 1MRK 504 135-UEN A Control 12.1.5 Bay control QCBAY 12.1.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Bay control QCBAY 12.1.5.2 Functionality The Bay control QCBAY function is used together with Local remote and local remote control functions to handle the selection of the operator place per bay.
  • Page 269: Settings

    Section 12 1MRK 504 135-UEN A Control 12.1.5.5 Settings Table 189: QCBAY Non group settings (basic) Name Values (Range) Unit Step Default Description AllPSTOValid Priority Priority Priority of originators No priority 12.1.6 Local remote LOCREM 12.1.6.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification...
  • Page 270: Settings

    Section 12 1MRK 504 135-UEN A Control Table 191: LOCREM Output signals Name Type Description BOOLEAN Control is disabled LOCAL BOOLEAN Local control is activated REMOTE BOOLEAN Remote control is activated VALID BOOLEAN Outputs are valid 12.1.6.5 Settings Table 192: LOCREM Non group settings (basic) Name Values (Range)
  • Page 271: Function Block

    Section 12 1MRK 504 135-UEN A Control 12.1.7.3 Function block LOCREMCTRL ^PSTO1 ^HMICTR1 ^PSTO2 ^HMICTR2 ^PSTO3 ^HMICTR3 ^PSTO4 ^HMICTR4 ^PSTO5 ^HMICTR5 ^PSTO6 ^HMICTR6 ^PSTO7 ^HMICTR7 ^PSTO8 ^HMICTR8 ^PSTO9 ^HMICTR9 ^PSTO10 ^HMICTR10 ^PSTO11 ^HMICTR11 ^PSTO12 ^HMICTR12 IEC09000074_1_en.vsd IEC09000074 V1 EN Figure 120: LOCREMCTRL function block 12.1.7.4 Signals...
  • Page 272: Settings

    Section 12 1MRK 504 135-UEN A Control Name Type Description HMICTR6 INTEGER Bitmask output 6 to local remote LHMI input HMICTR7 INTEGER Bitmask output 7 to local remote LHMI input HMICTR8 INTEGER Bitmask output 8 to local remote LHMI input HMICTR9 INTEGER Bitmask output 9 to local remote LHMI input...
  • Page 273: Settings

    Section 12 1MRK 504 135-UEN A Control Name Type Default Description SELECT4 BOOLEAN Select signal of control 4 SELECT5 BOOLEAN Select signal of control 5 SELECT6 BOOLEAN Select signal of control 6 SELECT7 BOOLEAN Select signal of control 7 SELECT8 BOOLEAN Select signal of control 8 SELECT9...
  • Page 274 Section 12 1MRK 504 135-UEN A Control in three steps, the selection, command evaluation and the supervision of position. Each step ends up with a pulsed signal to indicate that the respective step in the command sequence is finished. If an error occurs in one of the steps in the command sequence, the sequence is terminated and the error is mapped into the enumerated variable "cause"...
  • Page 275 Section 12 1MRK 504 135-UEN A Control Interaction with synchrocheck and synchronizing functions The Switch controller (SCSWI) works in conjunction with the synchrocheck and the synchronizing function (SESRSYN). It is assumed that the synchrocheck function is continuously in operation and gives the result to SCSWI. The result from the synchrocheck function is evaluated during the close execution.
  • Page 276 Section 12 1MRK 504 135-UEN A Control select execute command tSelect t1>tSelect, then long- timer operation-time in 'cause' is set en05000092.vsd IEC05000092 V1 EN Figure 123: tSelect The timer tExecutionFB supervises the time between the execute command and the command termination, see figure 124. execute command position L1 open...
  • Page 277: Bay Control Qcbay

    Section 12 1MRK 504 135-UEN A Control execute command SYNC_OK tSynchrocheck START_SY SY_INPRO tSynchronizing t2>tSynchronizing, then blocked-by-synchrocheck in 'cause' is set en05000095.vsd IEC05000095 V1 EN Figure 125: tSynchroCheck and tSynchronizing Error handling Depending on the error that occurs during the command sequence, the error signal will be set with a value.
  • Page 278 Section 12 1MRK 504 135-UEN A Control Local panel switch The local panel switch is a switch that defines the operator place selection. The switch connected to this function can have three positions remote/local/off. The positions are here defined so that remote means that operation is allowed from station/remote level and local from the IED level.
  • Page 279: Local Remote/Local Remote Control Locrem/Locremctrl

    Section 12 1MRK 504 135-UEN A Control • Blocking of position indications, BL_UPD. This input will block all inputs related to apparatus positions for all configured functions within the bay. • Blocking of commands, BL_CMD. This input will block all commands for all configured functions within the bay.
  • Page 280: Interlocking

    Section 12 1MRK 504 135-UEN A Control defined in the IED. Otherwise the default authority level, SuperUser, can handle the control without LogOn. The users and passwords are defined in PCM600. 12.2 Interlocking 12.2.1 Interlocking for busbar earthing switch BB_ES 12.2.1.1 Identification Function description...
  • Page 281: Logic Diagram

    Section 12 1MRK 504 135-UEN A Control 12.2.1.4 Logic diagram BB_ES VP_BB_DC QCREL BB_DC_OP QCITL & EXDU_BB QC_OP BBESOPTR QC_CL BBESCLTR en04000546.vsd IEC04000546 V1 EN 12.2.1.5 Signals Table 199: BB_ES Input signals Name Type Default Description QC_OP BOOLEAN Busbar earthing switch QC is in open position QC_CL BOOLEAN Busbar earthing switch QC is in closed position...
  • Page 282: Functionality

    Section 12 1MRK 504 135-UEN A Control 12.2.2.2 Functionality The interlocking for bus-section breaker (A1A2_BS) function is used for one bus- section circuit breaker between section 1 and 2 according to figure 129. The function can be used for different busbars, which includes a bus-section circuit breaker. WA1 (A1) WA2 (A2) en04000516.vsd...
  • Page 283: Logic Diagram

    Section 12 1MRK 504 135-UEN A Control 12.2.2.4 Logic diagram A1A2_BS QA1_OP QA1_CL VPQA1 QB1_OP QB1_CL VPQB1 QB2_OP QB2_CL VPQB2 QC3_OP QC3_CL VPQC3 QC4_OP QC4_CL VPQC4 S1QC1_OP S1QC1_CL VPS1QC1 S2QC2_OP S2QC2_CL VPS2QC2 VPQB1 QB1_OP QA1OPREL & >1 QA1O_EX1 QA1OPITL VPQB2 QB2_OP &...
  • Page 284: Signals

    Section 12 1MRK 504 135-UEN A Control VPQA1 VPQC3 QB2REL >1 & VPQC4 QB2ITL VPS2QC2 QA1_OP QC3_OP QC4_OP S2QC2_OP EXDU_ES QB2_EX1 VPQC4 VPS2QC2 & QC4_CL S2QC2_CL EXDU_ES QB2_EX2 VPQB1 QC3REL VPQB2 QC3ITL & QB1_OP QC4REL QB2_OP QC4ITL QB1_OP QB1OPTR QB1_CL QB1CLTR VPQB1 VPQB1TR...
  • Page 285 Section 12 1MRK 504 135-UEN A Control Name Type Default Description EXDU_12 BOOLEAN No transmission error from any bay connected to busbar 1 and 2 EXDU_ES BOOLEAN No transmission error from bays containing earthing switches QC1 or QC2 QA1O_EX1 BOOLEAN External open condition for apparatus QA1 QA1O_EX2 BOOLEAN...
  • Page 286: Settings

    Section 12 1MRK 504 135-UEN A Control 12.2.2.6 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600). 12.2.3 Interlocking for bus-section disconnector A1A2_DC 12.2.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification...
  • Page 287: Function Block

    Section 12 1MRK 504 135-UEN A Control 12.2.3.3 Function block A1A2_DC QB_OP QBOPREL QB_CL QBOPITL S1QC1_OP QBCLREL S1QC1_CL QBCLITL S2QC2_OP DCOPTR S2QC2_CL DCCLTR S1DC_OP VPDCTR S2DC_OP VPS1_DC VPS2_DC EXDU_ES EXDU_BB QBCL_EX1 QBCL_EX2 QBOP_EX1 QBOP_EX2 QBOP_EX3 IEC09000067_1_en.vsd IEC09000067 V1 EN Figure 132: A1A2_DC function block 12.2.3.4 Logic diagram...
  • Page 288: Settings

    Section 12 1MRK 504 135-UEN A Control Name Type Default Description S1QC1_CL BOOLEAN QC1 on bus section 1 is in closed position S2QC2_OP BOOLEAN QC2 on bus section 2 is in open position S2QC2_CL BOOLEAN QC2 on bus section 2 is in closed position S1DC_OP BOOLEAN All disconnectors on bus section 1 are in open...
  • Page 289: Identification

    Section 12 1MRK 504 135-UEN A Control 12.2.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Interlocking for bus-coupler bay ABC_BC 12.2.4.2 Functionality The interlocking for bus-coupler bay (ABC_BC) function is used for a bus-coupler bay connected to a double busbar arrangement according to figure 133.
  • Page 290: Function Block

    Section 12 1MRK 504 135-UEN A Control 12.2.4.3 Function block ABC_BC QA1_OP QA1OPREL QA1_CL QA1OPITL QB1_OP QA1CLREL QB1_CL QA1CLITL QB2_OP QB1REL QB2_CL QB1ITL QB7_OP QB2REL QB7_CL QB2ITL QB20_OP QB7REL QB20_CL QB7ITL QC1_OP QB20REL QC1_CL QB20ITL QC2_OP QC1REL QC2_CL QC1ITL QC11_OP QC2REL QC11_CL QC2ITL...
  • Page 291 Section 12 1MRK 504 135-UEN A Control VPQA1 VPQB2 QB1REL & >1 VPQC1 QB1ITL VPQC2 VPQC11 QA1_OP QB2_OP QC1_OP QC2_OP QC11_OP EXDU_ES QB1_EX1 VPQB2 VP_BC_12 & QB2_CL BC_12_CL EXDU_BC QB1_EX2 VPQC1 VPQC11 & QC1_CL QC11_CL EXDU_ES QB1_EX3 en04000534.vsd IEC04000534 V1 EN VPQA1 VPQB1 QB2REL...
  • Page 292 Section 12 1MRK 504 135-UEN A Control VPQA1 VPQB20 QB7REL & >1 VPQC1 QB7ITL VPQC2 VPQC71 QA1_OP QB20_OP QC1_OP QC2_OP QC71_OP EXDU_ES QB7_EX1 VPQC2 VPQC71 & QC2_CL QC71_CL EXDU_ES QB7_EX2 VPQA1 VPQB7 QB20REL & >1 VPQC1 QB20ITL VPQC2 VPQC21 QA1_OP QB7_OP QC1_OP QC2_OP...
  • Page 293: Signals

    Section 12 1MRK 504 135-UEN A Control 12.2.4.5 Signals Table 205: ABC_BC Input signals Name Type Default Description QA1_OP BOOLEAN QA1 is in open position QA1_CL BOOLEAN QA1 is in closed position QB1_OP BOOLEAN QB1 is in open position QB1_CL BOOLEAN QB1 is in closed position QB2_OP...
  • Page 294 Section 12 1MRK 504 135-UEN A Control Name Type Default Description QA1O_EX3 BOOLEAN External open condition for apparatus QA1 QB1_EX1 BOOLEAN External condition for apparatus QB1 QB1_EX2 BOOLEAN External condition for apparatus QB1 QB1_EX3 BOOLEAN External condition for apparatus QB1 QB2_EX1 BOOLEAN External condition for apparatus QB2...
  • Page 295: Settings

    Section 12 1MRK 504 135-UEN A Control Name Type Description BC12OPTR BOOLEAN No connection via the own bus coupler between WA1 and WA2 BC12CLTR BOOLEAN Connection exists via the own bus coupler between WA1 and WA2 BC17OPTR BOOLEAN No connection via the own bus coupler between WA1 and WA7 BC17CLTR BOOLEAN...
  • Page 296: Functionality

    Section 12 1MRK 504 135-UEN A Control 12.2.5.2 Functionality The interlocking for 1 1/2 breaker diameter (BH_CONN, BH_LINE_A, BH_LINE_B) functions are used for lines connected to a 1 1/2 breaker diameter according to figure 135. WA1 (A) WA2 (B) BH_LINE_B BH_LINE_A QB61 QB62...
  • Page 297: Function Block

    Section 12 1MRK 504 135-UEN A Control 12.2.5.3 Function block BH_CONN QA1_OP QA1CLREL QA1_CL QA1CLITL QB61_OP QB61REL QB61_CL QB61ITL QB62_OP QB62REL QB62_CL QB62ITL QC1_OP QC1REL QC1_CL QC1ITL QC2_OP QC2REL QC2_CL QC2ITL 1QC3_OP 1QC3_CL 2QC3_OP 2QC3_CL QB61_EX1 QB61_EX2 QB62_EX1 QB62_EX2 IEC09000072_1_en.vsd IEC09000072 V1 EN Figure 136: BH_CONN function block...
  • Page 298 Section 12 1MRK 504 135-UEN A Control BH_LINE_B QA1_OP QA1CLREL QA1_CL QA1CLITL QB6_OP QB6REL QB6_CL QB6ITL QB2_OP QB2REL QB2_CL QB2ITL QC1_OP QC1REL QC1_CL QC1ITL QC2_OP QC2REL QC2_CL QC2ITL QC3_OP QC3REL QC3_CL QC3ITL QB9_OP QB9REL QB9_CL QB9ITL QC9_OP QC9REL QC9_CL QC9ITL CQA1_OP QB2OPTR CQA1_CL...
  • Page 299: Logic Diagrams

    Section 12 1MRK 504 135-UEN A Control 12.2.5.4 Logic diagrams BH_CONN QA1_OP QA1_CL VPQA1 QB61_OP QB61_CL VPQB61 QB62_OP QB62_CL VPQB62 QC1_OP QC1_CL VPQC1 QC2_OP QC2_CL VPQC2 1QC3_OP 1QC3_CL VP1QC3 2QC3_OP 2QC3_CL VP2QC3 VPQB61 QA1CLREL VPQB62 & QA1CLITL VPQA1 VPQC1 QB61REL >1 &...
  • Page 300 Section 12 1MRK 504 135-UEN A Control BH_LINE_A QA1_OP QA1_CL VPQA1 QB1_OP QB1_CL VPQB1 QB6_OP QB6_CL VPQB6 QC9_OP QC9_CL VPQC9 QB9_OP QB9_CL VPQB9 QC1_OP QC1_CL VPQC1 QC2_OP QC2_CL VPQC2 QC3_OP QC3_CL VPQC3 CQA1_OP CQA1_CL VPCQA1 CQC1_OP CQC1_CL VPCQC1 CQC2_OP CQC2_CL VPCQC2 CQB61_OP CQB61_CL...
  • Page 301 Section 12 1MRK 504 135-UEN A Control VPQA1 VPQC1 QB1REL & >1 VPQC2 QB1ITL VPQC11 QA1_OP QC1_OP QC2_OP QC11_OP EXDU_ES QB1_EX1 VPQC1 VPQC11 & QC1_CL QC11_CL EXDU_ES QB1_EX2 VPQB1 QC1REL VPQB6 QC1ITL & QB1_OP QC2REL QB6_OP QC2ITL VPQB6 VPQB9 QC3REL &...
  • Page 302 Section 12 1MRK 504 135-UEN A Control BH_LINE_B QA1_OP QA1_CL VPQA1 QB2_OP QB2_CL VPQB2 QB6_OP QB6_CL VPQB6 QC9_OP QC9_CL VPQC9 QB9_OP QB9_CL VPQB9 QC1_OP QC1_CL VPQC1 QC2_OP QC2_CL VPQC2 QC3_OP QC3_CL VPQC3 CQA1_OP CQA1_CL VPCQA1 CQC1_OP CQC1_CL VPCQC1 CQC2_OP CQC2_CL VPCQC2 CQB62_OP CQB62_CL...
  • Page 303 Section 12 1MRK 504 135-UEN A Control VPQA1 VPQC1 QB2REL & >1 VPQC2 QB2ITL VPQC21 QA1_OP QC1_OP QC2_OP QC21_OP EXDU_ES QB2_EX1 VPQC1 VPQC21 & QC1_CL QC21_CL EXDU_ES QB2_EX2 VPQB2 QC1REL VPQB6 QC1ITL & QB2_OP QC2REL QB6_OP QC2ITL VPQB6 VPQB9 QC3REL &...
  • Page 304: Signals

    Section 12 1MRK 504 135-UEN A Control 12.2.5.5 Signals Table 207: BH_CONN Input signals Name Type Default Description QA1_OP BOOLEAN QA1 is in open position QA1_CL BOOLEAN QA1 is in closed position QB61_OP BOOLEAN QB61 is in open position QB61_CL BOOLEAN QB61 is in closed position QB62_OP...
  • Page 305 Section 12 1MRK 504 135-UEN A Control Name Type Default Description QC9_CL BOOLEAN QC9 is in closed position CQA1_OP BOOLEAN QA1 in module BH_CONN is in open position CQA1_CL BOOLEAN QA1 in module BH_CONN is in closed position CQB61_OP BOOLEAN QB61 in module BH_CONN is in open position CQB61_CL BOOLEAN...
  • Page 306 Section 12 1MRK 504 135-UEN A Control Name Type Default Description QC2_OP BOOLEAN QC2 is in open position QC2_CL BOOLEAN QC2 is in closed position QC3_OP BOOLEAN QC3 is in open position QC3_CL BOOLEAN QC3 is in closed position QB9_OP BOOLEAN QB9 is in open position QB9_CL...
  • Page 307 Section 12 1MRK 504 135-UEN A Control Table 210: BH_CONN Output signals Name Type Description QA1CLREL BOOLEAN Closing of QA1 is allowed QA1CLITL BOOLEAN Closing of QA1 is forbidden QB61REL BOOLEAN Switching of QB61 is allowed QB61ITL BOOLEAN Switching of QB61 is forbidden QB62REL BOOLEAN Switching of QB62 is allowed...
  • Page 308: Settings

    Section 12 1MRK 504 135-UEN A Control Table 212: BH_LINE_B Output signals Name Type Description QA1CLREL BOOLEAN Closing of QA1 is allowed QA1CLITL BOOLEAN Closing of QA1 is forbidden QB6REL BOOLEAN Switching of QB6 is allowed QB6ITL BOOLEAN Switching of QB6 is forbidden QB2REL BOOLEAN Switching of QB2 is allowed...
  • Page 309: Functionality

    Section 12 1MRK 504 135-UEN A Control 12.2.6.2 Functionality The interlocking for a double busbar double circuit breaker bay including DB_BUS_A, DB_BUS_B and DB_LINE functions are used for a line connected to a double busbar arrangement according to figure 139. WA1 (A) WA2 (B) DB_BUS_B...
  • Page 310: Function Block

    Section 12 1MRK 504 135-UEN A Control 12.2.6.3 Function block DB_BUS_A QA1_OP QA1CLREL QA1_CL QA1CLITL QB1_OP QB61REL QB1_CL QB61ITL QB61_OP QB1REL QB61_CL QB1ITL QC1_OP QC1REL QC1_CL QC1ITL QC2_OP QC2REL QC2_CL QC2ITL QC3_OP QB1OPTR QC3_CL QB1CLTR QC11_OP VPQB1TR QC11_CL EXDU_ES QB61_EX1 QB61_EX2 QB1_EX1 QB1_EX2...
  • Page 311: Logic Diagrams

    Section 12 1MRK 504 135-UEN A Control 12.2.6.4 Logic diagrams DB_BUS_A QA1_OP QA1_CL VPQA1 QB61_OP QB61_CL VPQB61 QB1_OP QB1_CL VPQB1 QC1_OP QC1_CL VPQC1 QC2_OP QC2_CL VPQC2 QC3_OP QC3_CL VPQC3 QC11_OP QC11_CL VPQC11 VPQB61 QA1CLREL VPQB1 & QA1CLITL VPQA1 VPQC1 QB61REL >1 &...
  • Page 312 Section 12 1MRK 504 135-UEN A Control DB_BUS_B QA2_OP QA2_CL VPQA2 QB62_OP QB62_CL VPQB62 QB2_OP QB2_CL VPQB2 QC4_OP QC4_CL VPQC4 QC5_OP QC5_CL VPQC5 QC3_OP QC3_CL VPQC3 QC21_OP QC21_CL VPQC21 VPQB62 QA2CLREL VPQB2 & QA2CLITL VPQA2 VPQC4 QB62REL >1 & VPQC5 QB62ITL VPQC3 QA2_OP...
  • Page 313 Section 12 1MRK 504 135-UEN A Control DB_LINE QA1_OP QA1_CL VPQA1 QA2_OP QA2_CL VPQA2 QB61_OP QB61_CL VPQB61 QC1_OP QC1_CL VPQC1 QC2_OP QC2_CL VPQC2 QB62_OP QB62_CL VPQB62 QC4_OP QC4_CL VPQC4 QC5_OP QC5_CL VPQC5 QB9_OP QB9_CL VPQB9 QC3_OP QC3_CL VPQC3 QC9_OP QC9_CL VPQC9 VOLT_OFF VOLT_ON...
  • Page 314: Signals

    Section 12 1MRK 504 135-UEN A Control VPQB61 VPQB62 QC3REL & VPQB9 QC3ITL QB61_OP QB62_OP QB9_OP VPQB9 VPVOLT QC9REL & QB9_OP QC9ITL VOLT_OFF en04000551.vsd IEC04000551 V1 EN 12.2.6.5 Signals Table 213: DB_BUS_A Input signals Name Type Default Description QA1_OP BOOLEAN QA1 is in open position QA1_CL BOOLEAN...
  • Page 315 Section 12 1MRK 504 135-UEN A Control Name Type Default Description QB62_OP BOOLEAN QB62 is in open position QB62_CL BOOLEAN QB62 is in closed position QC4_OP BOOLEAN QC4 is in open position QC4_CL BOOLEAN QC4 is in closed position QC5_OP BOOLEAN QC5 is in open position QC5_CL...
  • Page 316 Section 12 1MRK 504 135-UEN A Control Name Type Default Description QC3_CL BOOLEAN QC3 is in closed position QC9_OP BOOLEAN QC9 is in open position QC9_CL BOOLEAN QC9 is in closed position VOLT_OFF BOOLEAN There is no voltage on the line and not VT (fuse) failure VOLT_ON BOOLEAN...
  • Page 317: Settings

    Section 12 1MRK 504 135-UEN A Control Name Type Description QC5REL BOOLEAN Switching of QC5 is allowed QC5ITL BOOLEAN Switching of QC5 is forbidden QB2OPTR BOOLEAN QB2 is in open position QB2CLTR BOOLEAN QB2 is in closed position VPQB2TR BOOLEAN Switch status of QB2 is valid (open or closed) Table 218: DB_LINE Output signals...
  • Page 318 Section 12 1MRK 504 135-UEN A Control WA1 (A) WA2 (B) WA7 (C) en04000478.vsd IEC04000478 V1 EN Figure 143: Switchyard layout ABC_LINE The interlocking functionality in 650 series can not handle the transfer bus (WA7)C. Technical manual...
  • Page 319: Function Block

    Section 12 1MRK 504 135-UEN A Control 12.2.7.3 Function block ABC_LINE QA1_OP QA1CLREL QA1_CL QA1CLITL QB9_OP QB9REL QB9_CL QB9ITL QB1_OP QB1REL QB1_CL QB1ITL QB2_OP QB2REL QB2_CL QB2ITL QB7_OP QB7REL QB7_CL QB7ITL QC1_OP QC1REL QC1_CL QC1ITL QC2_OP QC2REL QC2_CL QC2ITL QC9_OP QC9REL QC9_CL QC9ITL...
  • Page 320: Logic Diagram

    Section 12 1MRK 504 135-UEN A Control 12.2.7.4 Logic diagram ABC_LINE QA1_OP QA1_CL VPQA1 QB9_OP QB9_CL VPQB9 QA1CLREL QB1_OP QA1CLITL QB1_CL VPQB1 & QB2_OP QB2_CL VPQB2 QB7_OP QB7_CL VPQB7 QC1_OP QC1_CL VPQC1 QC2_OP QC2_CL VPQC2 QC9_OP QC9_CL VPQC9 QC11_OP QC11_CL VPQC11 QC21_OP QC21_CL...
  • Page 321 Section 12 1MRK 504 135-UEN A Control QB1REL VPQA1 ³1 & VPQB2 VPQC1 QB1ITL VPQC2 VPQC11 QA1_OP QB2_OP QC1_OP QC2_OP QC11_OP EXDU_ES QB1_EX1 VPQB2 & VP_BC_12 QB2_CL BC_12_CL EXDU_BC QB1_EX2 VPQC1 & VPQC11 QC1_CL QC11_CL EXDU_ES QB1EX3 en04000528.vsd IEC04000528 V1 EN Technical manual...
  • Page 322 Section 12 1MRK 504 135-UEN A Control QB2REL VPQA1 ³1 & VPQB1 VPQC1 QB2ITL VPQC2 VPQC21 QA1_OP QB1_OP QC1_OP QC2_OP QC21_OP EXDU_ES QB2_EX1 VPQB1 & VP_BC_12 QB1_CL BC_12_CL EXDU_BC QB2_EX2 VPQC1 & VPQC21 QC1_CL QC21_CL EXDU_ES QB2_EX3 en04000529.vsd IEC04000529 V1 EN Technical manual...
  • Page 323 Section 12 1MRK 504 135-UEN A Control VPQC9 QB7REL >1 & VPQC71 VP_BB7_D QB7ITL VP_BC_17 VP_BC_27 QC9_OP QC71_OP EXDU_ES BB7_D_OP EXDU_BPB BC_17_OP BC_27_OP EXDU_BC QB7_EX1 VPQA1 & VPQB1 VPQC9 VPQB9 VPQC71 VP_BB7_D VP_BC_17 QA1_CL QB1_CL QC9_OP QB9_CL QC71_OP EXDU_ES BB7_D_OP EXDU_BPB BC_17_CL EXDU_BC...
  • Page 324 Section 12 1MRK 504 135-UEN A Control VPQA1 VPQB2 & >1 VPQC9 VPQB9 VPQC71 VP_BB7_D VP_BC_27 QA1_CL QB2_CL QC9_OP QB9_CL QC71_OP EXDU_ES BB7_D_OP EXDU_BPB BC_27_CL EXDU_BC QB7_EX3 VPQC9 VPQC71 & QC9_CL QC71_CL EXDU_ES QB7_EX4 VPQB1 QC1REL VPQB2 QC1ITL & VPQB9 QC2REL QB1_OP QC2ITL...
  • Page 325: Signals

    Section 12 1MRK 504 135-UEN A Control QB1_OP QB1OPTR QB1_CL QB1CLTR VPQB1 VPQB1TR QB2_OP QB2OPTR QB2_CL QB2CLTR VPQB2 VPQB2TR QB7_OP QB7OPTR QB7_CL QB7CLTR VPQB7 VPQB7TR QB1_OP QB12OPTR QB2_OP >1 QB12CLTR VPQB1 VPQB12TR VPQB2 & en04000532.vsd IEC04000532 V1 EN 12.2.7.5 Signals Table 219: ABC_LINE Input signals Name...
  • Page 326 Section 12 1MRK 504 135-UEN A Control Name Type Default Description QC21_CL BOOLEAN Earthing switch QC21 on busbar WA2 is in closed position QC71_OP BOOLEAN Earthing switch QC71 on busbar WA7 is in open position QC71_CL BOOLEAN Earthing switch QC71 on busbar WA7 is in closed position BB7_D_OP BOOLEAN...
  • Page 327: Settings

    Section 12 1MRK 504 135-UEN A Control Table 220: ABC_LINE Output signals Name Type Description QA1CLREL BOOLEAN Closing of QA1 is allowed QA1CLITL BOOLEAN Closing of QA1 is forbidden QB9REL BOOLEAN Switching of QB9 is allowed QB9ITL BOOLEAN Switching of QB9 is forbidden QB1REL BOOLEAN Switching of QB1 is allowed...
  • Page 328: Identification

    Section 12 1MRK 504 135-UEN A Control 12.2.8.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Interlocking for transformer bay AB_TRAFO 12.2.8.2 Functionality The interlocking for transformer bay (AB_TRAFO) function is used for a transformer bay connected to a double busbar arrangement according to figure 145.
  • Page 329: Function Block

    Section 12 1MRK 504 135-UEN A Control 12.2.8.3 Function block AB_TRAFO QA1_OP QA1CLREL QA1_CL QA1CLITL QB1_OP QB1REL QB1_CL QB1ITL QB2_OP QB2REL QB2_CL QB2ITL QC1_OP QC1REL QC1_CL QC1ITL QC2_OP QC2REL QC2_CL QC2ITL QB3_OP QB1OPTR QB3_CL QB1CLTR QB4_OP QB2OPTR QB4_CL QB2CLTR QC3_OP QB12OPTR QC3_CL QB12CLTR...
  • Page 330 Section 12 1MRK 504 135-UEN A Control VPQA1 VPQB2 QB1REL & >1 VPQC1 QB1ITL VPQC2 VPQC3 VPQC11 QA1_OP QB2_OP QC1_OP QC2_OP QC3_OP QC11_OP EXDU_ES QB1_EX1 VPQB2 VPQC3 & VP_BC_12 QB2_CL QC3_OP BC_12_CL EXDU_BC QB1_EX2 VPQC1 VPQC2 & VPQC3 VPQC11 QC1_CL QC2_CL QC3_CL QC11_CL...
  • Page 331: Signals

    Section 12 1MRK 504 135-UEN A Control VPQB1 QC1REL VPQB2 QC1ITL & VPQB3 QC2REL VPQB4 QC2ITL QB1_OP QB2_OP QB3_OP QB4_OP QB1_OP QB1OPTR QB1_CL QB1CLTR VPQB1 VPQB1TR QB2_OP QB2OPTR QB2_CL QB2CLTR VPQB2 VPQB2TR QB1_OP QB12OPTR QB2_OP >1 QB12CLTR VPQB1 VPQB12TR VPQB2 &...
  • Page 332: Settings

    Section 12 1MRK 504 135-UEN A Control Name Type Default Description QA1_EX1 BOOLEAN External condition for apparatus QA1 QA1_EX2 BOOLEAN External condition for apparatus QA1 QA1_EX3 BOOLEAN External condition for apparatus QA1 QB1_EX1 BOOLEAN External condition for apparatus QB1 QB1_EX2 BOOLEAN External condition for apparatus QB1 QB1_EX3...
  • Page 333: Position Evaluation Pos_Eval

    Section 12 1MRK 504 135-UEN A Control 12.2.9 Position evaluation POS_EVAL 12.2.9.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Position evaluation POS_EVAL 12.2.9.2 Functionality Position evaluation (POS_EVAL) function converts the input position data signal POSITION, consisting of value, time and signal status, to binary signals OPENPOS or CLOSEPOS.
  • Page 334: Signals

    Section 12 1MRK 504 135-UEN A Control 12.2.9.5 Signals Table 223: POS_EVAL Input signals Name Type Default Description POSITION INTEGER Position status including quality Table 224: POS_EVAL Output signals Name Type Description OPENPOS BOOLEAN Open position CLOSEPOS BOOLEAN Close position 12.2.9.6 Settings The function does not have any settings available in Local HMI or Protection and...
  • Page 335 Section 12 1MRK 504 135-UEN A Control The interlocking module is connected to the surrounding functions within a bay as shown in figure 148. Apparatus control Interlocking modules modules in SCILO SCSWI other bays SXSWI Apparatus control modules Interlocking SCILO SCSWI SXCBR module...
  • Page 336 Section 12 1MRK 504 135-UEN A Control When invalid data such as intermediate position, loss of a control IED, or input board error are used as conditions for the interlocking condition in a bay, a release for execution of the function will not be given. On the local HMI an override function exists, which can be used to bypass the interlocking function in cases where not all the data required for the condition is valid.
  • Page 337: Voltage Control

    Control of a single transformer, as well as control of up to two transformers within a single RET650, or parallel control of up to four transformers in two or even four separate RET650 is possible. Note that the last alternative is achieved by using the GOOSE interbay communication on the IEC 61850-8-1 protocol.
  • Page 338: Identification

    Section 12 1MRK 504 135-UEN A Control 12.3.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Automatic voltage control for tap TR8ATCC changer IEC10000166 V1 EN 12.3.2.2 Function block TR8ATCC I3P1* ATCCOUT I3P2* U3P2* AUTO HORIZ1* IBLK HORIZ2*...
  • Page 339 Section 12 1MRK 504 135-UEN A Control Name Type Default Description LOWERV BOOLEAN Binary "DOWN" command EAUTOBLK BOOLEAN Block voltage control in automatic control mode DEBLKAUT BOOLEAN Binary "Deblock Auto" command LVA1 BOOLEAN Activation of load voltage adjustment factor 1 LVA2 BOOLEAN Activation of load voltage adjustment factor 2...
  • Page 340 Section 12 1MRK 504 135-UEN A Control Name Type Description ULOW BOOLEAN Busbar voltage below the set limit voltBusbMinLimit UBLK BOOLEAN Busbar voltage below the set limit voltBusbBlockLimit HOURHUNT BOOLEAN Number of commands within the latest hour exceeded maximum level DAYHUNT BOOLEAN Number of commands within the last 24 hours...
  • Page 341: Settings

    Section 12 1MRK 504 135-UEN A Control 12.3.2.4 Settings Table 227: TR8ATCC Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On MeasMode PosSeq Selection of measured voltage and current L1L2 L2L3 L3L1 PosSeq TotalBlock Total block of the voltage control function AutoBlock Block of the automatic mode in voltage...
  • Page 342 Section 12 1MRK 504 135-UEN A Control Name Values (Range) Unit Step Default Description LVAConst1 -20.0 - 20.0 %UB2 Constant 1 for LVA, % of regulated voltage LVAConst2 -20.0 - 20.0 %UB2 Constant 2 for LVA, % of regulated voltage LVAConst3 -20.0 - 20.0 %UB2...
  • Page 343 Section 12 1MRK 504 135-UEN A Control Name Values (Range) Unit Step Default Description T2RXOP Receive block operation from parallel transformer 2 T3RXOP Receive block operation from parallel transformer 3 T4RXOP Receive block operation from parallel transformer 4 TapPosOffs -5 - 5 Tap position offset in relation to the master MFPosDiffLim 1 - 20...
  • Page 344: Monitored Data

    Section 12 1MRK 504 135-UEN A Control Name Values (Range) Unit Step Default Description TapPosBk Alarm Auto Block Alarm, auto or auto&man block for Auto Block position supervision Auto&Man Block UVBk Alarm Auto Block Alarm, auto block or auto&man block for Auto Block undervoltage Auto&Man Block...
  • Page 345: Identification

    Section 12 1MRK 504 135-UEN A Control 12.3.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Tap changer control and supervision, 6 TCMYLTC binary inputs IEC10000167 V1 EN 12.3.3.2 Function block TCMYLTC YLTCIN* YLTCOUT TCINPROG URAISE INERR ULOWER...
  • Page 346: Settings

    Section 12 1MRK 504 135-UEN A Control Name Type Default Description BIERR BOOLEAN Error bit from tap changer for the tap position BOOLEAN Bit 1 from tap changer for the tap position BOOLEAN Bit 2 from tap changer for the tap position BOOLEAN Bit 3 from tap changer for the tap position BOOLEAN...
  • Page 347: Monitored Data

    Section 12 1MRK 504 135-UEN A Control Table 233: TCMYLTC Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups LowVoltTap 1 - 63 Tap position for the lowest voltage HighVoltTap 1 - 63 Tap position for the highest voltage...
  • Page 348: Automatic Voltage Control For Tap Changer Tr8Atcc

    Section 12 1MRK 504 135-UEN A Control TR8ATCCis designed to automatically maintain the voltage at the LV-side side of a power transformer within given limits around a set target voltage. A raise or lower command is generated whenever the measured voltage, for a given period of time, deviates from the set target value by more than the preset deadband value that is, degree of insensitivity.
  • Page 349 Section 12 1MRK 504 135-UEN A Control • master-follower method • reverse reactance method • circulating current method. Parallel control with the master-follower method In the master-follower method, one of the transformers is selected to be master, and will regulate the voltage in accordance with the principles Automatic voltage control for a tap changer.
  • Page 350 Section 12 1MRK 504 135-UEN A Control The main objectives of the circulating current method for parallel voltage control are: Regulate the busbar or load voltage to the preset target value. Minimize the circulating current in order to achieve optimal sharing of the reactive load between parallel transformers.
  • Page 351: Tap Changer Control And Supervision, 6 Binary Inputs Tcmyltc

    Section 12 1MRK 504 135-UEN A Control Because the transformer impedance is dominantly inductive, it is possible to use just the transformer reactances in the above formula. At the same time this means that T1 circulating current lags the busbar voltage by almost 90°, while T2 circulating current leads the busbar voltage by almost 90°.
  • Page 352 Section 12 1MRK 504 135-UEN A Control Table 235: Binary, BCD and Gray conversion IEC06000522 V1 EN The Gray code conversion above is not complete and therefore the conversion from decimal numbers to Gray code is given below. Technical manual...
  • Page 353 Section 12 1MRK 504 135-UEN A Control Table 236: Gray code conversion IEC06000523 V1 EN Technical manual...
  • Page 354: Connection Between Tr8Atcc And Tcmyltc

    Section 12 1MRK 504 135-UEN A Control Via a mA input signal 12.3.4.3 Connection between TR8ATCC and TCMYLTC The two function blocks Automatic voltage control for tap changer, TR8ATCC and Tap changer control and supervision, 6 binary inputs TCMYLTC are connected to each other according to figure below.
  • Page 355 Section 12 1MRK 504 135-UEN A Control Table 238: Binary signals contained in word “enableBlockSignals”: ATCCOUT / YLTCIN Signal Description CircCurrBl Alarm/Block tap changer operation because of high circulating current CmdErrBl Alarm/Block tap changer operation because of command error OCBl Alarm/Block tap changer operation because of over current MFPosDiffBl Alarm/Block tap changer operation because the tap difference between a...
  • Page 356 Section 12 1MRK 504 135-UEN A Control Table 241: Analog signals: ATCCOUT / HORIZx Signal Description voltageBusbar Measured busbar voltage for this transformer ownLoad Currim Measured load current imaginary part for this transformer ownLoadCurrre Measured load current real part for this transformer reacSec Transformer reactance in primary ohms referred to the LV side relativePosition...
  • Page 357: Technical Data

    Section 12 1MRK 504 135-UEN A Control 12.3.5 Technical data Table 244: TR8ATCC, TCMYLTC technical data Function Range or value Accuracy Transformer reactance on (0.1–200.0)Ω, primary ATCC side Time delay for lower (1.0–100.0) s command when fast step down mode is activated Voltage control set voltage (85.0–120.0)% of UB2 ±0.5% of U...
  • Page 358: Logic Rotating Switch For Function Selection And Lhmi Presentation Slggio

    Section 12 1MRK 504 135-UEN A Control Function Range or value Accuracy Time after position change (1–60) s ± 0.5% ± 110 ms before the value is accepted Tap changer constant time- (1–120) s ± 0.5% ± 110 ms Raise/lower command output (0.5–10.0) s ±...
  • Page 359: Function Block

    Section 12 1MRK 504 135-UEN A Control 12.4.3 Function block SLGGIO BLOCK ^P01 PSTO ^P02 ^P03 DOWN ^P04 ^P05 ^P06 ^P07 ^P08 ^P09 ^P10 ^P11 ^P12 ^P13 ^P14 ^P15 ^P16 ^P17 ^P18 ^P19 ^P20 ^P21 ^P22 ^P23 ^P24 ^P25 ^P26 ^P27 ^P28 ^P29...
  • Page 360: Settings

    Section 12 1MRK 504 135-UEN A Control Name Type Description BOOLEAN Selector switch position 11 BOOLEAN Selector switch position 12 BOOLEAN Selector switch position 13 BOOLEAN Selector switch position 14 BOOLEAN Selector switch position 15 BOOLEAN Selector switch position 16 BOOLEAN Selector switch position 17 BOOLEAN...
  • Page 361: Monitored Data

    Section 12 1MRK 504 135-UEN A Control 12.4.6 Monitored data Table 248: SLGGIO Monitored data Name Type Values (Range) Unit Description SWPOSN INTEGER Switch position as integer value 12.4.7 Operation principle The logic rotating switch for function selection and LHMI presentation (SLGGIO) function has two operating inputs –...
  • Page 362: Functionality

    Section 12 1MRK 504 135-UEN A Control 12.5.2 Functionality The Selector mini switch VSGGIO function block is a multipurpose function used for a variety of applications, as a general purpose switch. VSGGIO can be controlled from the menu or from a symbol on the single line diagram (SLD) on the local HMI.
  • Page 363: Settings

    Section 12 1MRK 504 135-UEN A Control 12.5.5 Settings Table 251: VSGGIO Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On CtlModel Dir Norm Dir Norm Specifies the type for control model SBO Enh according to IEC 61850 Mode Steady...
  • Page 364: Iec 61850 Generic Communication I/O Functions Dpggio

    Section 12 1MRK 504 135-UEN A Control IPOS1 IPOS2 Name of displayed string Default string value PosUndefined Position1 Position2 PosBadState 12.6 IEC 61850 generic communication I/O functions DPGGIO 12.6.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number IEC 61850 generic communication I/O DPGGIO...
  • Page 365: Settings

    Section 12 1MRK 504 135-UEN A Control 12.6.5 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 12.6.6 Operation principle Upon receiving the input signals, the IEC 61850 generic communication I/O functions (DPGGIO) function block will send the signals over IEC 61850-8-1 to the equipment or system that requests these signals.
  • Page 366: Signals

    Section 12 1MRK 504 135-UEN A Control 12.7.4 Signals Table 254: SPC8GGIO Input signals Name Type Default Description BLOCK BOOLEAN Block of function PSTO INTEGER Operator place selection Table 255: SPC8GGIO Output signals Name Type Description OUT1 BOOLEAN Output 1 OUT2 BOOLEAN Output 2...
  • Page 367: Operation Principle

    Section 12 1MRK 504 135-UEN A Control Name Values (Range) Unit Step Default Description Latched7 Pulsed Pulsed Setting for pulsed/latched mode for output Latched tPulse7 0.01 - 6000.00 0.01 0.10 Output 7 Pulse Time Latched8 Pulsed Pulsed Setting for pulsed/latched mode for output Latched tPulse8 0.01 - 6000.00...
  • Page 368: Function Block

    Section 12 1MRK 504 135-UEN A Control 12.8.3 Function block AUTOBITS BLOCK ^CMDBIT1 PSTO ^CMDBIT2 ^CMDBIT3 ^CMDBIT4 ^CMDBIT5 ^CMDBIT6 ^CMDBIT7 ^CMDBIT8 ^CMDBIT9 ^CMDBIT10 ^CMDBIT11 ^CMDBIT12 ^CMDBIT13 ^CMDBIT14 ^CMDBIT15 ^CMDBIT16 ^CMDBIT17 ^CMDBIT18 ^CMDBIT19 ^CMDBIT20 ^CMDBIT21 ^CMDBIT22 ^CMDBIT23 ^CMDBIT24 ^CMDBIT25 ^CMDBIT26 ^CMDBIT27 ^CMDBIT28 ^CMDBIT29 ^CMDBIT30...
  • Page 369: Settings

    Section 12 1MRK 504 135-UEN A Control Name Type Description CMDBIT8 BOOLEAN Command out bit 8 CMDBIT9 BOOLEAN Command out bit 9 CMDBIT10 BOOLEAN Command out bit 10 CMDBIT11 BOOLEAN Command out bit 11 CMDBIT12 BOOLEAN Command out bit 12 CMDBIT13 BOOLEAN Command out bit 13...
  • Page 370: Function Commands For Iec 60870-5-103 I103Cmd

    Section 12 1MRK 504 135-UEN A Control appropriate. ex: pulse-On, on-time=100, off-time=300, count=5 would give 5 positive 100 ms pulses, 300 ms apart. There is a BLOCK input signal, which will disable the operation of the function, in the same way the setting Operation: On/Off does. That means that, upon activation of the BLOCK input, all 32 CMDBITxx outputs will be set to 0.
  • Page 371: Settings

    Section 12 1MRK 504 135-UEN A Control 12.9.4 Settings Table 262: I103CMD Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) 12.10 IED commands for IEC 60870-5-103 I103IEDCMD 12.10.1 Functionality I103IEDCMD is a command block in control direction with defined IED functions. All outputs are pulsed and they are NOT stored.
  • Page 372: Settings

    Section 12 1MRK 504 135-UEN A Control 12.10.4 Settings Table 265: I103IEDCMD Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) 12.11 Function commands user defined for IEC 60870-5-103 I103USRCMD 12.11.1 Functionality I103USRCMD is a command block in control direction with user defined output signals.
  • Page 373: Settings

    Section 12 1MRK 504 135-UEN A Control Name Type Description OUTPUT6 BOOLEAN Command output 6 OUTPUT7 BOOLEAN Command output 7 OUTPUT8 BOOLEAN Command output 8 12.11.4 Settings Table 268: I103USRCMD Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255...
  • Page 374: Function Block

    Section 12 1MRK 504 135-UEN A Control 12.12.2 Function block I103GENCMD BLOCK ^CMD_OFF ^CMD_ON IEC10000285-1-en.vsd IEC10000285 V1 EN Figure 161: I103GENCMD function block 12.12.3 Signals Table 269: I103GENCMD Input signals Name Type Default Description BLOCK BOOLEAN Block of command Table 270: I103GENCMD Output signals Name Type...
  • Page 375: Function Block

    Section 12 1MRK 504 135-UEN A Control The BLOCK input will block only the signals in monitoring direction (the position information), not the commands via IEC 60870-5-103. The SELECT input is used to indicate that the monitored apparatus has been selected (in a select-before-operate type of control) 12.13.2 Function block...
  • Page 377: Section 13 Logic

    Section 13 1MRK 504 135-UEN A Logic Section 13 Logic 13.1 Tripping logic common 3-phase output SMPPTRC 13.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Tripping logic common 3-phase output SMPPTRC I->O SYMBOL-K V1 EN 13.1.2 Functionality A function block for protection tripping is provided for each circuit breaker involved...
  • Page 378: Signals

    Section 13 1MRK 504 135-UEN A Logic 13.1.4 Signals Table 274: SMPPTRC Input signals Name Type Default Description BLOCK BOOLEAN Block of function TRIN BOOLEAN Trip all phases SETLKOUT BOOLEAN Input for setting the circuit breaker lockout function RSTLKOUT BOOLEAN Input for resetting the circuit breaker lockout function Table 275:...
  • Page 379: Technical Data

    Section 13 1MRK 504 135-UEN A Logic BLOCK TRIP tTripMin TRIN Operation Mode = On Program = 3Ph en05000789.vsd IEC05000789 V1 EN Figure 164: Simplified logic diagram for three phase trip Lockout can be activated either by activating the input (SETLKOUT) or automatically from trip input by setting AutoLock to On.
  • Page 380: Function Block

    Section 13 1MRK 504 135-UEN A Logic TMAGGIO 3 output signals and the physical outputs allows the user to adapt the signals to the physical tripping outputs according to the specific application needs for settable pulse or steady output. 13.2.3 Function block TMAGGIO INPUT1...
  • Page 381: Settings

    Section 13 1MRK 504 135-UEN A Logic Name Type Default Description INPUT10 BOOLEAN Binary input 10 INPUT11 BOOLEAN Binary input 11 INPUT12 BOOLEAN Binary input 12 INPUT13 BOOLEAN Binary input 13 INPUT14 BOOLEAN Binary input 14 INPUT15 BOOLEAN Binary input 15 INPUT16 BOOLEAN Binary input 16...
  • Page 382: Operation Principle

    Section 13 1MRK 504 135-UEN A Logic Name Values (Range) Unit Step Default Description ModeOutput1 Steady Steady Mode for output 1, steady or pulsed Pulsed ModeOutput2 Steady Steady Mode for output 2, steady or pulsed Pulsed ModeOutput3 Steady Steady Mode for output 3, steady or pulsed Pulsed 13.2.6 Operation principle...
  • Page 383: Configurable Logic Blocks

    Section 13 1MRK 504 135-UEN A Logic PulseTime & ModeOutput1=Pulsed Input 1 Output 1 ³1 Ondelay Offdelay & ³1 PulseTime & ModeOutput2=Pulsed Input 17 Output 2 ³1 Ondelay Offdelay & ³1 PulseTime & ModeOutput3=Pulsed Output 3 ³1 Ondelay Offdelay & ³1 IEC09000612_2_en.vsd IEC09000612 V2 EN...
  • Page 384 Section 13 1MRK 504 135-UEN A Logic • PULSETIMER function block can be used, for example, for pulse extensions or limiting of operation of outputs, settable pulse time. • GATE function block is used for whether or not a signal should be able to pass from the input to the output.
  • Page 385: Or Function Block

    Section 13 1MRK 504 135-UEN A Logic • XORQT XOR function block. The function also propagates timestamp and quality of input signals. Each block has two outputs where one is inverted. • TIMERSETQT function has pick-up and drop-out delayed outputs related to the input signal.
  • Page 386: Inverter Function Block Inverter

    Section 13 1MRK 504 135-UEN A Logic Functionality The OR function is used to form general combinatory expressions with boolean variables. The OR function block has six inputs and two outputs. One of the outputs is inverted. Function block INPUT1 INPUT2 NOUT INPUT3...
  • Page 387: Pulsetimer Function Block

    Section 13 1MRK 504 135-UEN A Logic Function block INVERTER INPUT IEC09000287-1-en.vsd IEC09000287 V1 EN Figure 168: INVERTER function block Signals Table 284: INVERTER Input signals Name Type Default Description INPUT BOOLEAN Input signal Table 285: INVERTER Output signals Name Type Description BOOLEAN...
  • Page 388: Controllable Gate Function Block Gate

    Section 13 1MRK 504 135-UEN A Logic Signals Table 286: PULSETIMER Input signals Name Type Default Description INPUT BOOLEAN Input signal Table 287: PULSETIMER Output signals Name Type Description BOOLEAN Output signal Settings Table 288: PULSETIMER Non group settings (basic) Name Values (Range) Unit...
  • Page 389: Exclusive Or Function Block Xor

    Section 13 1MRK 504 135-UEN A Logic Table 290: GATE Output signals Name Type Description BOOLEAN Output signal Settings Table 291: GATE Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off/On 13.3.1.6 Exclusive OR function block XOR Identification Function description IEC 61850...
  • Page 390: Loop Delay Function Block Loopdelay

    Section 13 1MRK 504 135-UEN A Logic Table 293: XOR Output signals Name Type Description BOOLEAN Output signal NOUT BOOLEAN Inverted output signal Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 13.3.1.7 Loop delay function block LOOPDELAY Function description...
  • Page 391: Timer Function Block Timerset

    Section 13 1MRK 504 135-UEN A Logic 13.3.1.8 Timer function block TIMERSET Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Timer function block TIMERSET Functionality The function block TIMERSET has pick-up and drop-out delayed outputs related to the input signal.
  • Page 392: And Function Block

    Section 13 1MRK 504 135-UEN A Logic Table 297: TIMERSET Output signals Name Type Description BOOLEAN Output signal, pick-up delayed BOOLEAN Output signal, drop-out delayed Settings Table 298: TIMERSET Group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off/On 0.000 - 90000.000 0.001...
  • Page 393: Set-Reset Memory Function Block Srmemory

    Section 13 1MRK 504 135-UEN A Logic Signals Table 299: AND Input signals Name Type Default Description INPUT1 BOOLEAN Input signal 1 INPUT2 BOOLEAN Input signal 2 INPUT3 BOOLEAN Input signal 3 INPUT4 BOOLEAN Input signal 4 Table 300: AND Output signals Name Type Description...
  • Page 394: Reset-Set With Memory Function Block Rsmemory

    Section 13 1MRK 504 135-UEN A Logic Function block SRMEMORY RESET NOUT IEC09000293-1-en.vsd IEC09000293 V1 EN Figure 176: SRMEMORY function block Signals Table 302: SRMEMORY Input signals Name Type Default Description BOOLEAN Input signal to set RESET BOOLEAN Input signal to reset Table 303: SRMEMORY Output signals Name...
  • Page 395 Section 13 1MRK 504 135-UEN A Logic Table 305: Truth table for RSMEMORY function block RESET NOUT Last Inverted last value value Function block RSMEMORY RESET NOUT IEC09000294-1-en.vsd IEC09000294 V1 EN Figure 177: RSMEMORY function block Signals Table 306: RSMEMORY Input signals Name Type Default...
  • Page 396: Technical Data

    Section 13 1MRK 504 135-UEN A Logic 13.3.2 Technical data Table 309: Configurable logic blocks Logic block Quantity Range or Accuracy with cycle value time 5 ms 20 ms 100 ms INVERTER SRMEMORY RSMEMORY GATE PULSETIMER (0.000– ± 0.5% ± 25 ms for 20 90000.000) s ms cycle time TIMERSET...
  • Page 397: Fixed Signals Fxdsign

    Section 13 1MRK 504 135-UEN A Logic 13.4 Fixed signals FXDSIGN 13.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Fixed signals FXDSIGN 13.4.2 Functionality The Fixed signals function FXDSIGN generates nine pre-set (fixed) signals that can be used in the configuration of an IED, either for forcing the unused inputs in other function blocks to a certain level/value, or for creating certain logic.
  • Page 398: Settings

    Section 13 1MRK 504 135-UEN A Logic 13.4.5 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600). 13.4.6 Operation principle There are nine outputs from FXDSIGN function block: • OFF is a boolean signal, fixed to OFF (boolean 0) value •...
  • Page 399: Function Block

    Section 13 1MRK 504 135-UEN A Logic 13.5.3 Function block B16I BLOCK IN10 IN11 IN12 IN13 IN14 IN15 IN16 IEC09000035-1-en.vsd IEC09000035 V1 EN Figure 179: B16I function block 13.5.4 Signals Table 312: B16I Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN...
  • Page 400: Settings

    Section 13 1MRK 504 135-UEN A Logic 13.5.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 13.5.6 Monitored data Table 314: B16I Monitored data Name Type Values (Range) Unit Description INTEGER Output value...
  • Page 401: Boolean 16 To Integer Conversion With Logic Node Representation B16Ifcvi

    Section 13 1MRK 504 135-UEN A Logic Name of input Type Default Description Value when Value when activated deactivated IN14 BOOLEAN Input 14 8192 IN15 BOOLEAN Input 15 16384 IN16 BOOLEAN Input 16 32768 The sum of the numbers in column “Value when activated” when all INx (where 1≤x≤16) are active that is=1;...
  • Page 402: Function Block

    Section 13 1MRK 504 135-UEN A Logic 13.6.3 Function block B16IFCVI BLOCK IN10 IN11 IN12 IN13 IN14 IN15 IN16 IEC09000624-1-en.vsd IEC09000624 V1 EN Figure 180: B16IFCVI function block 13.6.4 Signals Table 315: B16IFCVI Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN...
  • Page 403: Settings

    Section 13 1MRK 504 135-UEN A Logic Table 316: B16IFCVI Output signals Name Type Description INTEGER Output value 13.6.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 13.6.6 Monitored data Table 317: B16IFCVI Monitored data Name...
  • Page 404: Integer To Boolean 16 Conversion Ib16A

    Section 13 1MRK 504 135-UEN A Logic Name of input Type Default Description Value when Value when activated deactivated IN10 BOOLEAN Input 10 IN11 BOOLEAN Input 11 1024 IN12 BOOLEAN Input 12 2048 IN13 BOOLEAN Input 13 4096 IN14 BOOLEAN Input 14 8192 IN15...
  • Page 405: Signals

    Section 13 1MRK 504 135-UEN A Logic 13.7.4 Signals Table 318: IB16A Input signals Name Type Default Description BLOCK BOOLEAN Block of function INTEGER Integer Input Table 319: IB16A Output signals Name Type Description OUT1 BOOLEAN Output 1 OUT2 BOOLEAN Output 2 OUT3 BOOLEAN...
  • Page 406 Section 13 1MRK 504 135-UEN A Logic This follows the general formulae: The sum of the values of all OUTx = 2 where 1≤x≤16 will be equal to the integer value on the input INP. The Integer to Boolean 16 conversion function (IB16A) will transfer an integer with a value between 0 to 65535 connected to the input INP to a combination of activated outputs OUTx where 1≤x≤16.
  • Page 407: Integer To Boolean 16 Conversion With Logic Node Representation Ib16Fcvb

    Section 13 1MRK 504 135-UEN A Logic 13.8 Integer to boolean 16 conversion with logic node representation IB16FCVB 13.8.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Integer to boolean 16 conversion with IB16FCVB logic node representation 13.8.2 Functionality Integer to boolean conversion with logic node representation function IB16FCVB is...
  • Page 408: Settings

    Section 13 1MRK 504 135-UEN A Logic Table 321: IB16FCVB Output signals Name Type Description OUT1 BOOLEAN Output 1 OUT2 BOOLEAN Output 2 OUT3 BOOLEAN Output 3 OUT4 BOOLEAN Output 4 OUT5 BOOLEAN Output 5 OUT6 BOOLEAN Output 6 OUT7 BOOLEAN Output 7 OUT8...
  • Page 409: Elapsed Time Integrator With Limit Transgression And Overflow Supervision Teiggio

    Section 13 1MRK 504 135-UEN A Logic activated outputs OUTx where 1≤x≤16. The values represented by the different OUTx are according to Table 322. When an OUTx is not activated, its value is 0. The IB16FCVB function is designed for receiving the integer input from a station computer - for example, over IEC 61850.
  • Page 410: Functionality

    Section 13 1MRK 504 135-UEN A Logic 13.9.2 Functionality Elapsed Time Integrator (TEIGGIO) function is a function that accumulates the elapsed time when a given binary signal has been high. The main features of TEIGGIO are • Applicable to long time integration (≤999 999.9 seconds). •...
  • Page 411: Settings

    Section 13 1MRK 504 135-UEN A Logic 13.9.5 Settings Table 325: TEIGGIO Group settings (basic) Name Values (Range) Unit Step Default Description Operation 0 - 1 Operation Off / On tWarning 1.00 - 999999.99 0.01 600.00 Time limit for warning supervision tAlarm 1.00 - 999999.99 0.01...
  • Page 412: Operation Accuracy

    Section 13 1MRK 504 135-UEN A Logic • applicable to long time integration (≤999 999.9 seconds) • output ACCTIME presents integrated value in seconds to all tools • integrated value is retained in non-volatile memory, if any warning, alarm or overflow occurs •...
  • Page 413: Technical Data

    Section 13 1MRK 504 135-UEN A Logic 13.9.7 Technical data Table 326: TEIGGIO Technical data Function Cycle time (ms) Range or value Accuracy Elapsed time 0 ~ 999999.9 s ±0.05% or ±0.01 s integration 0 ~ 999999.9 s ±0.05% or ±0.04 s 0 ~ 999999.9 s ±0.05% or ±0.2 s Technical manual...
  • Page 415: Section 14 Monitoring

    Section 14 1MRK 504 135-UEN A Monitoring Section 14 Monitoring 14.1 Measurements 14.1.1 Functionality Measurement functions is used for power system measurement, supervision and reporting to the local HMI, monitoring tool within PCM600 or to station level for example, via IEC 61850. The possibility to continuously monitor measured values of active power, reactive power, currents, voltages, frequency, power factor etc.
  • Page 416: Measurements Cvmmxn

    Section 14 1MRK 504 135-UEN A Monitoring • P, Q and S: three phase active, reactive and apparent power • PF: power factor • U: phase-to-phase voltage amplitude • I: phase current amplitude • F: power system frequency The output values are displayed in the local HMI under Main menu/Tests/Function status/Monitoring/CVMMXN/Outputs The measuring functions CMMXU, VNMMXU and VMMXU provide physical quantities:...
  • Page 417: Function Block

    Section 14 1MRK 504 135-UEN A Monitoring 14.1.2.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600. CVMMXN I3P* U3P* S_RANGE P_INST P_RANGE Q_INST Q_RANGE PF_RANGE ILAG ILEAD U_RANGE...
  • Page 418: Settings

    Section 14 1MRK 504 135-UEN A Monitoring Name Type Description I_RANGE INTEGER Calculated current range REAL System frequency magnitude of deadband value F_RANGE INTEGER System frequency range 14.1.2.4 Settings Table 329: CVMMXN Non group settings (basic) Name Values (Range) Unit Step Default Description...
  • Page 419 Section 14 1MRK 504 135-UEN A Monitoring Name Values (Range) Unit Step Default Description PFRepTyp Cyclic Cyclic Reporting type Dead band Int deadband UMin 0.0 - 200.0 50.0 Minimum value in % of UBase UMax 0.0 - 200.0 200.0 Maximum value in % of UBase URepTyp Cyclic Cyclic...
  • Page 420 Section 14 1MRK 504 135-UEN A Monitoring Name Values (Range) Unit Step Default Description QLimHyst 0.000 - 100.000 0.001 5.000 Hysteresis value in % of range (common for all limits) UGenZeroDb 1 - 100 Zero point clamping in % of Ubase PFDbRepInt 1 - 300 Type...
  • Page 421: Monitored Data

    Section 14 1MRK 504 135-UEN A Monitoring Name Values (Range) Unit Step Default Description UAmpComp100 -10.000 - 10.000 0.001 0.000 Amplitude factor to calibrate voltage at 100% of Ur IAmpComp5 -10.000 - 10.000 0.001 0.000 Amplitude factor to calibrate current at 5% of Ir IAmpComp30 -10.000 - 10.000...
  • Page 422: Function Block

    Section 14 1MRK 504 135-UEN A Monitoring 14.1.3.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600. CMMXU IL1RANG IL1ANGL IL2RANG IL2ANGL IL3RANG IL3ANGL IEC08000225 V1 EN Figure 186: CMMXU function block 14.1.3.3...
  • Page 423: Monitored Data

    Section 14 1MRK 504 135-UEN A Monitoring Name Values (Range) Unit Step Default Description ILMax 0 - 500000 1300 Maximum value ILRepTyp Cyclic Dead band Reporting type Dead band Int deadband ILAngDbRepInt 1 - 300 Type Cycl: Report interval (s), Db: In % of range, Int Db: In %s Table 335: CMMXU Non group settings (advanced)
  • Page 424: Phase-Phase Voltage Measurement Vmmxu

    Section 14 1MRK 504 135-UEN A Monitoring 14.1.4 Phase-phase voltage measurement VMMXU 14.1.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Phase-phase voltage measurement VMMXU SYMBOL-UU V1 EN 14.1.4.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.
  • Page 425: Settings

    Section 14 1MRK 504 135-UEN A Monitoring Name Type Description UL31 REAL UL31 Amplitude UL31RANG INTEGER UL31Amplitude range UL31ANGL REAL UL31 Angle 14.1.4.4 Settings Table 339: VMMXU Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On GlobalBaseSel 1 - 6 Selection of one of the Global Base Value...
  • Page 426: Current Sequence Component Measurement Cmsqi

    Section 14 1MRK 504 135-UEN A Monitoring 14.1.5 Current sequence component measurement CMSQI 14.1.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Current sequence component CMSQI measurement I1, I2, I0 SYMBOL-VV V1 EN 14.1.5.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.
  • Page 427: Settings

    Section 14 1MRK 504 135-UEN A Monitoring Name Type Description REAL I2 Amplitude I2RANG INTEGER I2 Amplitude range I2ANGL REAL I2Angle 14.1.5.4 Settings Table 344: CMSQI Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On 3I0DbRepInt 1 - 300 Type...
  • Page 428: Monitored Data

    Section 14 1MRK 504 135-UEN A Monitoring Table 345: CMSQI Non group settings (advanced) Name Values (Range) Unit Step Default Description 3I0ZeroDb 0 - 100000 Zero point clamping 3I0HiHiLim 0 - 500000 3600 High High limit (physical value) 3I0HiLim 0 - 500000 3300 High limit (physical value) 3I0LowLim...
  • Page 429: Function Block

    Section 14 1MRK 504 135-UEN A Monitoring 14.1.6.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600. VMSQI U3P* 3U0RANG 3U0ANGL U1RANG U1ANGL U2RANG U2ANGL IEC08000224-2-en.vsd IEC08000224 V2 EN Figure 189: VMSQI function block...
  • Page 430: Settings

    Section 14 1MRK 504 135-UEN A Monitoring 14.1.6.4 Settings Table 349: VMSQI Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On 3U0DbRepInt 1 - 300 Type Cycl: Report interval (s), Db: In % of range, Int Db: In %s 3U0Min 0 - 2000000...
  • Page 431: Monitored Data

    Section 14 1MRK 504 135-UEN A Monitoring Name Values (Range) Unit Step Default Description U1HiHiLim 0 - 2000000 96000 High High limit (physical value) U1HiLim 0 - 2000000 86000 High limit (physical value) U1LowLim 0 - 2000000 71000 Low limit (physical value) U1LowLowLim 0 - 2000000 66000...
  • Page 432: Signals

    Section 14 1MRK 504 135-UEN A Monitoring VNMMXU U3P* UL1RANG UL1ANGL UL2RANG UL2ANGL UL3RANG UL3ANGL IEC08000226-2-en.vsd IEC08000226 V2 EN Figure 190: VNMMXU function block 14.1.7.3 Signals Table 352: VNMMXU Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL Table 353: VNMMXU Output signals...
  • Page 433: Monitored Data

    Section 14 1MRK 504 135-UEN A Monitoring Name Values (Range) Unit Step Default Description URepTyp Cyclic Dead band Reporting type Dead band Int deadband ULimHys 0.000 - 100.000 0.001 5.000 Hysteresis value in % of range and is common for all limits UAngDbRepInt 1 - 300 Type...
  • Page 434 Section 14 1MRK 504 135-UEN A Monitoring processing blocks. The number of processed alternate measuring quantities depends on the type of IED and built-in options. The information on measured quantities is available for the user at different locations: • Locally by means of the local HMI •...
  • Page 435 Section 14 1MRK 504 135-UEN A Monitoring X_RANGE = 3 High-high limit X_RANGE= 1 Hysteresis High limit X_RANGE=0 X_RANGE=0 Low limit X_RANGE=2 Low-low limit X_RANGE=4 en05000657.vsd IEC05000657 V1 EN Figure 191: Presentation of operating limits Each analogue output has one corresponding supervision level output (X_RANGE). The output signal is an integer in the interval 0-4 (0: Normal, 1: High limit exceeded, 3: High-high limit exceeded, 2: below Low limit and 4: below Low-low limit).
  • Page 436 Section 14 1MRK 504 135-UEN A Monitoring Value Reported Value Reported Value Reported Value Reported (1st) Value Reported t (*) t (*) t (*) t (*) en05000500.vsd (*)Set value for t: XDbRepInt IEC05000500 V1 EN Figure 192: Periodic reporting Amplitude dead-band supervision If a measuring value is changed, compared to the last reported value, and the change is larger than the ±ΔY pre-defined limits that are set by user (UDbRepIn), then the measuring channel reports the new value to a higher level.
  • Page 437 Section 14 1MRK 504 135-UEN A Monitoring Value Reported Value Reported Value Reported Value Reported (1st) 99000529.vsd IEC99000529 V1 EN Figure 193: Amplitude dead-band supervision reporting After the new value is reported, the ±ΔY limits for dead-band are automatically set around it.
  • Page 438: Measurements Cvmmxn

    Section 14 1MRK 504 135-UEN A Monitoring A1 >= pre-set value A >= A2 >= pre-set value pre-set value A3 + A4 + A5 + A6 + A7 >= pre-set value Value Reported Value (1st) Value Reported Value Reported Reported Value Reported 99000530.vsd...
  • Page 439 Section 14 1MRK 504 135-UEN A Monitoring Set value for Formula used for complex, three- Formula used for voltage and Comment parameter phase power calculation current magnitude calculation “Mode” L1L2 Used when × only U L1L2 phase-to- (Equation 91) phase EQUATION1391 V1 EN ) / 2 voltage is...
  • Page 440 Section 14 1MRK 504 135-UEN A Monitoring (Equation 105) EQUATION1405 V1 EN (Equation 106) EQUATION1406 V1 EN Additionally to the power factor value the two binary output signals from the function are provided which indicates the angular relationship between current and voltage phasors.
  • Page 441 Section 14 1MRK 504 135-UEN A Monitoring IEC05000652 V2 EN Figure 195: Calibration curves The first current and voltage phase in the group signals will be used as reference and the amplitude and angle compensation will be used for related input signals. Low pass filtering In order to minimize the influence of the noise signal on the measurement it is possible to introduce the recursive, low pass filtering of the measured values for P, Q, S, U, I...
  • Page 442 Section 14 1MRK 504 135-UEN A Monitoring Default value for parameter k is 0.00. With this value the new calculated value is immediately given out without any filtering (that is, without any additional delay). When k is set to value bigger than 0, the filtering is enabled. Appropriate value of k shall be determined separately for every application.
  • Page 443: Phase Current Measurement Cmmxu

    Section 14 1MRK 504 135-UEN A Monitoring Busbar Protected Object IEC09000038-1-en.vsd IEC09000038-1-EN V1 EN Figure 196: Internal IED directionality convention for P & Q measurements Practically, it means that active and reactive power will have positive values when they flow from the busbar towards the protected object and they will have negative values when they flow from the protected object towards the busbar.
  • Page 444: Phase-Phase And Phase-Neutral Voltage Measurements Vmmxu, Vnmmxu

    Section 14 1MRK 504 135-UEN A Monitoring compensation at 5, 30 and 100% of rated current. The compensation below 5% and above 100% is constant and linear in between, see figure 195. Phase currents (amplitude and angle) are available on the outputs and each amplitude output has a corresponding supervision level output (ILx_RANG).
  • Page 445: Event Counter Cntggio

    Section 14 1MRK 504 135-UEN A Monitoring Function Range or value Accuracy Apparent power, S 0.1 x U < U < 1.5 x U ± 1.0% of S at S ≤ S 0.2 x I < I < 4.0 x I ±...
  • Page 446: Settings

    Section 14 1MRK 504 135-UEN A Monitoring Name Type Default Description COUNTER5 BOOLEAN Input for counter 5 COUNTER6 BOOLEAN Input for counter 6 RESET BOOLEAN Reset of function Table 359: CNTGGIO Output signals Name Type Description VALUE1 INTEGER Output of counter 1 VALUE2 INTEGER Output of counter 2...
  • Page 447: Reporting

    Section 14 1MRK 504 135-UEN A Monitoring however gives as a result that it can take long time, up to several minutes, before a new value is stored in the flash memory. And if a new CNTGGIO value is not stored before auxiliary power interruption, it will be lost.
  • Page 448: Principle Of Operation

    Section 14 1MRK 504 135-UEN A Monitoring 14.3.3 Principle of operation Limit counter (L4UFCNT) counts the number of positive and/or negative flanks on the binary input signal depending on the function settings. L4UFCNT also checks if the accumulated value is equal or greater than any of its four settable limits. The four limit outputs will be activated relatively on reach of each limit and remain activated until the reset of the function.
  • Page 449: Reporting

    Section 14 1MRK 504 135-UEN A Monitoring Overflow indication ® ® ® ® Actual value Max value -1 Max value Max value +1 Max value +2 Max value +3 Counted value ® ® ® ® Max value -1 Max value IEC12000626_1_en.vsd IEC12000626 V1 EN Figure 199:...
  • Page 450: Signals

    Section 14 1MRK 504 135-UEN A Monitoring 14.3.5 Signals Table 363: L4UFCNT Input signals Name Type Default Description BLOCK BOOLEAN Block of function INPUT BOOLEAN Input for counter RESET BOOLEAN Reset of function Table 364: L4UFCNT Output signals Name Type Description ERROR BOOLEAN...
  • Page 451: Monitored Data

    Section 14 1MRK 504 135-UEN A Monitoring 14.3.7 Monitored data Table 366: L4UFCNT Monitored data Name Type Values (Range) Unit Description VALUE INTEGER Counted value 14.3.8 Technical data Table 367: L4UFCNTtechnical data Function Range or value Accuracy Counter value 0-65535 Max.
  • Page 452: Disturbance Report Drprdre

    Section 14 1MRK 504 135-UEN A Monitoring used to get information about the recordings. The disturbance report files may be uploaded to PCM600 for further analysis using the disturbance handling tool. 14.4.2 Disturbance report DRPRDRE 14.4.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification...
  • Page 453: Monitored Data

    Section 14 1MRK 504 135-UEN A Monitoring Name Values (Range) Unit Step Default Description MaxNoStoreRec 10 - 100 Maximum number of stored disturbances ZeroAngleRef 1 - 30 Trip value recorder, phasor reference channel OpModeTest Operation mode during test mode 14.4.2.5 Monitored data Table 370: DRPRDRE Monitored data...
  • Page 454 Section 14 1MRK 504 135-UEN A Monitoring Name Type Values (Range) Unit Description UnTrigStatCh10 BOOLEAN Under level trig for analog channel 10 activated OvTrigStatCh10 BOOLEAN Over level trig for analog channel 10 activated UnTrigStatCh11 BOOLEAN Under level trig for analog channel 11 activated OvTrigStatCh11 BOOLEAN...
  • Page 455 Section 14 1MRK 504 135-UEN A Monitoring Name Type Values (Range) Unit Description UnTrigStatCh22 BOOLEAN Under level trig for analog channel 22 activated OvTrigStatCh22 BOOLEAN Over level trig for analog channel 22 activated UnTrigStatCh23 BOOLEAN Under level trig for analog channel 23 activated OvTrigStatCh23 BOOLEAN...
  • Page 456: Analog Input Signals Axradr

    Section 14 1MRK 504 135-UEN A Monitoring Name Type Values (Range) Unit Description UnTrigStatCh34 BOOLEAN Under level trig for analog channel 34 activated OvTrigStatCh34 BOOLEAN Over level trig for analog channel 34 activated UnTrigStatCh35 BOOLEAN Under level trig for analog channel 35 activated OvTrigStatCh35 BOOLEAN...
  • Page 457: Function Block

    Section 14 1MRK 504 135-UEN A Monitoring 14.4.3.2 Function block A1RADR ^GRPINPUT1 ^GRPINPUT2 ^GRPINPUT3 ^GRPINPUT4 ^GRPINPUT5 ^GRPINPUT6 ^GRPINPUT7 ^GRPINPUT8 ^GRPINPUT9 ^GRPINPUT10 IEC09000348-1-en.vsd IEC09000348 V1 EN Figure 201: A1RADR function block, analog inputs, example for A1RADR, A2RADR and A3RADR 14.4.3.3 Signals A1RADR - A3RADR Input signals Tables for input signals for A1RADR, A2RADR and A3RADR are similar except for GRPINPUT number.
  • Page 458: Settings

    Section 14 1MRK 504 135-UEN A Monitoring 14.4.3.4 Settings A1RADR - A3RADR Settings Setting tables for A1RADR, A2RADR and A3RADR are similar except for channel numbers. • A1RADR, channel01 - channel10 • A2RADR, channel11 - channel20 • A3RADR, channel21 - channel30 Table 372: A1RADR Non group settings (basic) Name...
  • Page 459 Section 14 1MRK 504 135-UEN A Monitoring Name Values (Range) Unit Step Default Description FunType5 0 - 255 Function type for analog channel 5 (IEC-60870-5-103) InfNo5 0 - 255 Information number for analog channel 5 (IEC-60870-5-103) FunType6 0 - 255 Function type for analog channel 6 (IEC-60870-5-103) InfNo6...
  • Page 460 Section 14 1MRK 504 135-UEN A Monitoring Name Values (Range) Unit Step Default Description UnderTrigOp03 Use under level trigger for analog channel 3 (on) or not (off) UnderTrigLe03 0 - 200 Under trigger level for analog channel 3 in % of signal OverTrigOp03 Use over level trigger for analog channel 3 (on) or not (off)
  • Page 461: Analog Input Signals A4Radr

    Section 14 1MRK 504 135-UEN A Monitoring Name Values (Range) Unit Step Default Description UnderTrigLe08 0 - 200 Under trigger level for analog channel 8 in % of signal OverTrigOp08 Use over level trigger for analog channel 8 (on) or not (off) OverTrigLe08 0 - 5000 Over trigger level for analog channel 8 in...
  • Page 462: Signals

    Section 14 1MRK 504 135-UEN A Monitoring Channels 31-40 are not shown in LHMI. They are used for internally calculated analog signals. 14.4.4.3 Signals Table 374: A4RADR Input signals Name Type Default Description INPUT31 REAL Analog channel 31 INPUT32 REAL Analog channel 32 INPUT33 REAL...
  • Page 463 Section 14 1MRK 504 135-UEN A Monitoring Name Values (Range) Unit Step Default Description InfNo31 0 - 255 Information number for analog channel 31 (IEC-60870-5-103) FunType32 0 - 255 Function type for analog channel 32 (IEC-60870-5-103) InfNo32 0 - 255 Information number for analog channel 32 (IEC-60870-5-103) FunType33...
  • Page 464 Section 14 1MRK 504 135-UEN A Monitoring Name Values (Range) Unit Step Default Description OverTrigOp31 Use over level trigger for analog channel 31 (on) or not (off) OverTrigLe31 0 - 5000 Over trigger level for analog channel 31 in % of signal NomValue32 0.0 - 999999.9 Nominal value for analog channel 32...
  • Page 465 Section 14 1MRK 504 135-UEN A Monitoring Name Values (Range) Unit Step Default Description OverTrigLe36 0 - 5000 Over trigger level for analog channel 36 in % of signal NomValue37 0.0 - 999999.9 Nominal value for analog channel 37 UnderTrigOp37 Use under level trigger for analog channel 37 (on) or not (off) UnderTrigLe37...
  • Page 466: Binary Input Signals Bxrbdr

    Section 14 1MRK 504 135-UEN A Monitoring 14.4.5 Binary input signals BxRBDR 14.4.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Binary input signals B1RBDR Binary input signals B2RBDR Binary input signals B3RBDR Binary input signals B4RBDR Binary input signals B5RBDR...
  • Page 467: Settings

    Section 14 1MRK 504 135-UEN A Monitoring Table 377: B1RBDR Input signals Name Type Default Description INPUT1 BOOLEAN Binary channel 1 INPUT2 BOOLEAN Binary channel 2 INPUT3 BOOLEAN Binary channel 3 INPUT4 BOOLEAN Binary channel 4 INPUT5 BOOLEAN Binary channel 5 INPUT6 BOOLEAN Binary channel 6...
  • Page 468 Section 14 1MRK 504 135-UEN A Monitoring Name Values (Range) Unit Step Default Description SetLED02 Set LED on HMI for binary channel 2 Start Trip Start and Trip TrigDR03 Trigger operation On/Off SetLED03 Set LED on HMI for binary channel 3 Start Trip Start and Trip...
  • Page 469 Section 14 1MRK 504 135-UEN A Monitoring Name Values (Range) Unit Step Default Description TrigDR11 Trigger operation On/Off SetLED11 Set LED on HMI for binary channel 11 Start Trip Start and Trip TrigDR12 Trigger operation On/Off SetLED12 Set LED on HMI for binary channel 12 Start Trip Start and Trip...
  • Page 470 Section 14 1MRK 504 135-UEN A Monitoring Name Values (Range) Unit Step Default Description FunType5 0 - 255 Function type for binary channel 5 (IEC -60870-5-103) InfNo5 0 - 255 Information number for binary channel 5 (IEC -60870-5-103) FunType6 0 - 255 Function type for binary channel 6 (IEC -60870-5-103) InfNo6...
  • Page 471 Section 14 1MRK 504 135-UEN A Monitoring Table 379: B1RBDR Non group settings (advanced) Name Values (Range) Unit Step Default Description TrigLevel01 Trig on 0 Trig on 1 Trigger on positive (1) or negative (0) Trig on 1 slope for binary input 1 IndicationMa01 Hide Hide...
  • Page 472: Operation Principle

    Section 14 1MRK 504 135-UEN A Monitoring Name Values (Range) Unit Step Default Description TrigLevel13 Trig on 0 Trig on 1 Trigger on positive (1) or negative (0) Trig on 1 slope for binary input 13 IndicationMa13 Hide Hide Indication mask for binary channel 13 Show TrigLevel14 Trig on 0...
  • Page 473 Section 14 1MRK 504 135-UEN A Monitoring A1-4RADR Disturbance Report A4RADR DRPRDRE Analog signals Trip value rec B1-6RBDR Disturbance recorder Binary signals B6RBDR Event list Event recorder Indications IEC09000337-2-en.vsd IEC09000337 V2 EN Figure 204: Disturbance report functions and related function blocks The whole disturbance report can contain information for a number of recordings, each with the data coming from all the parts mentioned above.
  • Page 474: Disturbance Information

    Section 14 1MRK 504 135-UEN A Monitoring The memory limit does not affect the rest of the disturbance report (Event list, Event recorder, Indications and Trip value recorder). The maximum number of recordings depend on each recordings total recording time. Long recording time will reduce the number of recordings to less than 100.
  • Page 475: Disturbance Recorder

    Section 14 1MRK 504 135-UEN A Monitoring 14.4.6.6 Disturbance recorder Disturbance recorder records analog and binary signal data before, during and after the fault, see Disturbance recorder section for detailed information. 14.4.6.7 Time tagging The IED has a built-in real-time calendar and clock. This function is used for all time tagging within the disturbance report 14.4.6.8 Recording times...
  • Page 476: Analog Signals

    Section 14 1MRK 504 135-UEN A Monitoring 14.4.6.9 Analog signals Up to 40 analog signals can be selected for recording by the Disturbance recorder and triggering of the Disturbance report function. Out of these 40, 30 are reserved for external analog signals from analog input modules via preprocessing function blocks (SMAI) and summation block (3PHSUM).
  • Page 477: Binary Signals

    Section 14 1MRK 504 135-UEN A Monitoring corresponding information is available on the non-calculated output (AI4) on the SMAI function block. Connect the signals to the AxRADR accordingly. For each of the analog signals, Operation = On means that it is recorded by the disturbance recorder.
  • Page 478: Post Retrigger

    Section 14 1MRK 504 135-UEN A Monitoring Manual trigger A disturbance report can be manually triggered from the local HMI, PCM600 or via station bus (IEC 61850). When the trigger is activated, the manual trigger signal is generated. This feature is especially useful for testing. Binary-signal trigger Any binary signal state (logic one or a logic zero) can be selected to generate a trigger (Triglevel = Trig on 0/Trig on 1).
  • Page 479: Technical Data

    Section 14 1MRK 504 135-UEN A Monitoring 14.4.7 Technical data Table 380: DRPRDRE technical data Function Range or value Accuracy Current recording ± 1,0% of I at I ≤ I ± 1,0% of I at I > Ir Voltage recording ±...
  • Page 480: Function Block

    Section 14 1MRK 504 135-UEN A Monitoring 14.5.2 Function block The Indications function has no function block of it’s own. 14.5.3 Signals 14.5.3.1 Input signals The Indications function logs the same binary input signals as the Disturbance report function. 14.5.4 Operation principle The LED indications display this information: Green LED:...
  • Page 481: Technical Data

    Section 14 1MRK 504 135-UEN A Monitoring The name of the binary signal that appears in the Indication function is the user- defined name assigned at configuration of the IED. The same name is used in disturbance recorder function, indications and event recorder function. 14.5.5 Technical data Table 381:...
  • Page 482: Technical Data

    Section 14 1MRK 504 135-UEN A Monitoring generated by both internal logical signals and binary input channels. The internal signals are time-tagged in the main processor module, while the binary input channels are time-tagged directly in each I/O module. The events are collected during the total recording time (pre-, post-fault and limit time), and are stored in the disturbance report flash memory at the end of each recording.
  • Page 483: Signals

    Section 14 1MRK 504 135-UEN A Monitoring 14.7.3 Signals 14.7.3.1 Input signals The Event list logs the same binary input signals as configured for the Disturbance report function. 14.7.4 Operation principle When a binary signal, connected to the disturbance report function, changes status, the event list function stores input name, status and time in the event list in chronological order.
  • Page 484: Function Block

    Section 14 1MRK 504 135-UEN A Monitoring The Trip value recorder calculates the values of all selected analog input signals connected to the Disturbance recorder function. The result is magnitude and phase angle before and during the fault for each analog input signal. The trip value recorder information is available for the disturbances locally in the IED.
  • Page 485: Technical Data

    Section 14 1MRK 504 135-UEN A Monitoring The trip value record is stored as a part of the disturbance report information and managed in PCM600 or via the local HMI. 14.8.5 Technical data Table 384: DRPRDRE technical data Function Value Buffer capacity Maximum number of analog inputs Maximum number of disturbance reports...
  • Page 486: Operation Principle

    Section 14 1MRK 504 135-UEN A Monitoring 14.9.5 Operation principle Disturbance recording is based on the acquisition of binary and analog signals. The binary signals can be either true binary input signals or internal logical signals generated by the functions in the IED. The analog signals to be recorded are input channels from the Transformer Input Module (TRM) through the Signal Matrix Analog Input (SMAI) and possible summation (Sum3Ph) function blocks and some internally derived analog signals.
  • Page 487 Section 14 1MRK 504 135-UEN A Monitoring The recorded disturbance is now ready for retrieval and evaluation. The recording files comply with the Comtrade standard IEC 60255-24 and are divided into three files; a header file (HDR), a configuration file (CFG) and a data file (DAT). The header file (optional in the standard) contains basic information about the disturbance, that is, information from the Disturbance report sub-functions.
  • Page 488: Technical Data

    Section 14 1MRK 504 135-UEN A Monitoring 14.9.6 Technical data Table 385: DRPRDRE technical data Function Value Buffer capacity Maximum number of analog inputs Maximum number of binary inputs Maximum number of disturbance reports Maximum total recording time (3.4 s recording time and maximum number of 340 seconds (100 channels, typical value) recordings) at 50 Hz...
  • Page 489: Settings

    Section 14 1MRK 504 135-UEN A Monitoring 14.10.5 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 14.10.6 Operation principle Upon receiving a signal at its input, IEC61850 generic communication I/O functions (SPGGIO) function sends the signal over IEC 61850-8-1 to the equipment or system that requests this signal.
  • Page 490: Signals

    Section 14 1MRK 504 135-UEN A Monitoring 14.11.4 Signals Table 387: SP16GGIO Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN Input 1 status BOOLEAN Input 2 status BOOLEAN Input 3 status BOOLEAN Input 4 status BOOLEAN Input 5 status BOOLEAN Input 6 status...
  • Page 491: Operation Principle

    Section 14 1MRK 504 135-UEN A Monitoring Name Type Values (Range) Unit Description OUT7 GROUP Output 7 status SIGNAL OUT8 GROUP Output 8 status SIGNAL OUT9 GROUP Output 9 status SIGNAL OUT10 GROUP Output 10 status SIGNAL OUT11 GROUP Output 11 status SIGNAL OUT12 GROUP...
  • Page 492: Functionality

    Section 14 1MRK 504 135-UEN A Monitoring 14.12.2 Functionality IEC61850 generic communication I/O functions (MVGGIO) function is used to send the instantaneous value of an analog signal to other systems or equipment in the substation. It can also be used inside the same IED, to attach a RANGE aspect to an analog value and to permit measurement supervision on that value.
  • Page 493: Monitored Data

    Section 14 1MRK 504 135-UEN A Monitoring Name Values (Range) Unit Step Default Description MV lLim -5000.00 - 5000.00 xBase 0.01 -800.00 Low limit multiplied with the base prefix (multiplication factor) MV llLim -5000.00 - 5000.00 xBase 0.01 -900.00 Low Low limit multiplied with the base prefix (multiplication factor) MV min -5000.00 - 5000.00...
  • Page 494: Functionality

    Section 14 1MRK 504 135-UEN A Monitoring 14.13.2 Functionality The current and voltage measurements functions (CVMMXN, CMMXU, VMMXU and VNMMXU), current and voltage sequence measurement functions (CMSQI and VMSQI) and IEC 61850 generic communication I/O functions (MVGGIO) are provided with measurement supervision functionality. All measured values can be supervised with four settable limits: low-low limit, low limit, high limit and high-high limit.
  • Page 495: Operation Principle

    Section 14 1MRK 504 135-UEN A Monitoring GlobalBaseSel: Selects the global base value group used by the function to define (IBase), (UBase) and (SBase). 14.13.6 Operation principle The input signal must be connected to a range output of a measuring function block (CVMMXN, CMMXU, VMMXU, VNMMXU, CMSQI, VMSQ or MVGGIO).
  • Page 496: Signals

    Section 14 1MRK 504 135-UEN A Monitoring SPVNZBAT activates the start and alarm outputs when the battery terminal voltage exceeds the set upper limit or drops below the set lower limit. A time delay for the overvoltage and undervoltage alarms can be set according to definite time characteristics.
  • Page 497: Measured Values

    Section 14 1MRK 504 135-UEN A Monitoring 14.14.6 Measured values Table 399: SPVNZBAT Measured values Name Type Default Description U_BATT REAL 0.00 Battery terminal voltage that has to be supervised BLOCK BOOLEAN Blocks all the output signals of the function 14.14.7 Monitored Data Table 400:...
  • Page 498: Technical Data

    Section 14 1MRK 504 135-UEN A Monitoring Low level detector The level detector compares the battery voltage U_BATT with the set value of the BattVoltLowLim setting. If the value of the U_BATT input drops below the set value of the BattVoltLowLim setting, the start signal ST_ULOW is activated. The measured voltage between the battery terminals U_BATT is available through the Monitored data view.
  • Page 499: Functionality

    Section 14 1MRK 504 135-UEN A Monitoring 14.15.2 Functionality Insulation gas monitoring function SSIMG is used for monitoring the circuit breaker condition. Binary information based on the gas pressure in the circuit breaker is used as input signals to the function. In addition, the function generates alarms based on received information.
  • Page 500: Settings

    Section 14 1MRK 504 135-UEN A Monitoring Table 403: SSIMG Output signals Name Type Description PRESSURE REAL Pressure service value PRES_ALM BOOLEAN Pressure below alarm level PRES_LO BOOLEAN Pressure below lockout level TEMP REAL Temperature of the insulation medium TEMP_ALM BOOLEAN Temperature above alarm level TEMP_LO...
  • Page 501: Technical Data

    Section 14 1MRK 504 135-UEN A Monitoring below the levels for more than the set time delays the corresponding signals, PRES_ALM, pressure below alarm level and PRES_LO, pressure below lockout level alarm will be obtained. The input signal BLK_ALM is used to block the two alarms levels. The input signal BLOCK is used to block both the alarms and the function.
  • Page 502: Signals

    Section 14 1MRK 504 135-UEN A Monitoring 14.16.4 Signals Inputs LEVEL and TEMP together with settings LevelAlmLimit, LevelLOLimit, TempAlarmLimit and TempLOLimit are not supported in this release of 650 series. Table 406: SSIML Input signals Name Type Default Description BLOCK BOOLEAN Block of function BLK_ALM...
  • Page 503: Operation Principle

    Section 14 1MRK 504 135-UEN A Monitoring Name Values (Range) Unit Step Default Description tTempAlarm 0.000 - 60.000 0.001 0.000 Time delay for temperature alarm tTempLockOut 0.000 - 60.000 0.001 0.000 Time delay for temperture lockout tResetLevelAlm 0.000 - 60.000 0.001 0.000 Reset time delay for level alarm...
  • Page 504: Functionality

    Section 14 1MRK 504 135-UEN A Monitoring 14.17.2 Functionality The circuit breaker condition monitoring function SSCBR is used to monitor different parameters of the circuit breaker. The breaker requires maintenance when the number of operations has reached a predefined value. The energy is calculated from the measured input currents as a sum of I t values.
  • Page 505: Settings

    Section 14 1MRK 504 135-UEN A Monitoring Name Type Default Description LOPRES BOOLEAN Binary pressure input for lockout indication SPRCHRGN BOOLEAN CB spring charging started input SPRCHRGD BOOLEAN CB spring charged input CBCNTRST BOOLEAN Reset input for CB remaining life and operation counter IACCRST BOOLEAN...
  • Page 506: Monitored Data

    Section 14 1MRK 504 135-UEN A Monitoring Name Values (Range) Unit Step Default Description AccCurrAlmLvl 0.00 - 20000.00 0.01 2500.00 Setting of alarm level for accumulated currents power AccCurrLO 0.00 - 20000.00 0.01 2500.00 Lockout limit setting for accumulated currents power DirCoef -3.00 - -0.50 0.01...
  • Page 507: Operation Principle

    Section 14 1MRK 504 135-UEN A Monitoring Name Type Values (Range) Unit Description NOOPRDAY INTEGER The number of days CB has been inactive CBLIFEL1 INTEGER CB Remaining life phase CBLIFEL2 INTEGER CB Remaining life phase CBLIFEL3 INTEGER CB Remaining life phase IACCL1 REAL Accumulated currents...
  • Page 508: Circuit Breaker Status

    Section 14 1MRK 504 135-UEN A Monitoring GUID-FE21BBDC-57A6-425C-B22B-8E646C1BD932 V1 EN Figure 216: Functional module diagram 14.17.7.1 Circuit breaker status The circuit breaker status subfunction monitors the position of the circuit breaker, that is, whether the breaker is in an open, closed or intermediate position. The operation of the breaker status monitoring can be described using a module diagram.
  • Page 509: Circuit Breaker Operation Monitoring

    Section 14 1MRK 504 135-UEN A Monitoring GUID-60ADC120-4B5A-40D8-B1C5-475E4634214B V1 EN Figure 217: Functional module diagram for monitoring circuit breaker status BLOCK and BLK_ALM inputs Phase current check This module compares the three phase currents with the setting AccDisLevel. If the current in a phase exceeds the set level, information about phase is reported to the contact position indicator module.
  • Page 510: Breaker Contact Travel Time

    Section 14 1MRK 504 135-UEN A Monitoring Inactivity timer The module calculates the number of days the circuit breaker has remained inactive, that is, has stayed in the same open or closed state. The calculation is done by monitoring the states of the POSOPEN and POSCLOSE auxiliary contacts. The inactive days NOOPRDAY is available through the Monitored data view.
  • Page 511: Operation Counter

    Section 14 1MRK 504 135-UEN A Monitoring GUID-3AD25F5A-639A-4941-AA61-E69FA2357AFE V1 EN There is a time difference t between the start of the main contact opening and the opening of the POSCLOSE auxiliary contact. Similarly, there is a time gap t between the time when the POSOPEN auxiliary contact opens and the main contact is completely open.
  • Page 512: Accumulation Of I Y T

    Section 14 1MRK 504 135-UEN A Monitoring GUID-FF1221A4-6160-4F92-9E7F-A412875B69E1 V1 EN Figure 220: Functional module diagram for counting circuit breaker operations Operation counter The operation counter counts the number of operations based on the state change of the binary auxiliary contacts inputs POSCLOSE and POSOPEN. The number of operations NO_OPR is available through the Monitored data view on the LHMI or through tools via communications.
  • Page 513 Section 14 1MRK 504 135-UEN A Monitoring GUID-DAC3746F-DFBF-4186-A99D-1D972578D32A V1 EN Figure 221: Functional module diagram for calculating accumulative energy and alarm Accumulated energy calculator This module calculates the accumulated energy I t [(kA) s]. The factor y is set with the CurrExp setting.
  • Page 514: Remaining Life Of The Circuit Breaker

    Section 14 1MRK 504 135-UEN A Monitoring Alarm limit check The IACCALM alarm is activated when the accumulated energy exceeds the value set with the AccCurrAlmLvl threshold setting. However, when the energy exceeds the limit value set with the AccCurrLO threshold setting, the IACCLOAL output is activated.
  • Page 515: Circuit Breaker Spring Charged Indication

    Section 14 1MRK 504 135-UEN A Monitoring The remaining life is calculated separately for all three phases and it is available as a monitored data value CBLIFEL1 (L2, L3). The values can be cleared by setting the parameter CB wear values in the clear menu from LHMI. Clearing CB wear values also resets the operation counter.
  • Page 516: Gas Pressure Supervision

    Section 14 1MRK 504 135-UEN A Monitoring Alarm limit check If the time taken by the spring to charge is more than the value set with the tSprngChrgAlm setting, the subfunction generates the SPRCHRAL alarm. It is possible to block the SPRCHRAL alarm signal by activating the BLOCK binary input.
  • Page 517: Technical Data

    Section 14 1MRK 504 135-UEN A Monitoring 14.17.8 Technical data Table 414: SSCBR Technical data Function Range or value Accuracy Alarm levels for open and close (0-200) ms ± 0.5% ± 25 ms travel time Alarm levels for number of (0 - 9999) operations Setting of alarm for spring...
  • Page 518: Function Block

    Section 14 1MRK 504 135-UEN A Monitoring GUID-B8A3A04C-430D-4488-9F72-8529FAB0B17D V1 EN Figure 226: Settings for CMMXU: 1 All input signals to IEC 60870-5-103 I103MEAS must be connected in application configuration. Connect an input signals on IEC 60870-5-103 I103MEAS that is not connected to the corresponding output on MMXU function, to outputs on the fixed signal function block.
  • Page 519: Signals

    Section 14 1MRK 504 135-UEN A Monitoring 14.18.3 Signals Table 415: I103MEAS Input signals Name Type Default Description BLOCK BOOLEAN Block of service value reporting REAL Service value for current phase L1 REAL Service value for current phase L2 REAL Service value for current phase L3 REAL Service value for residual current IN...
  • Page 520: Measurands User Defined Signals For Iec 60870-5-103

    Section 14 1MRK 504 135-UEN A Monitoring 14.19 Measurands user defined signals for IEC 60870-5-103 I103MEASUSR 14.19.1 Functionality I103MEASUSR is a function block with user defined input measurands in monitor direction. These function blocks include the FunctionType parameter for each block in the private range, and the Information number parameter for each block.
  • Page 521: Settings

    Section 14 1MRK 504 135-UEN A Monitoring 14.19.4 Settings Table 418: I103MEASUSR Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) InfNo 1 - 255 Information number for measurands (1-255) MaxMeasur1 0.05 - 0.05 1000.00...
  • Page 522: Signals

    Section 14 1MRK 504 135-UEN A Monitoring 14.20.3 Signals Table 419: I103AR Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting 16_ARACT BOOLEAN Information number 16, auto-recloser active 128_CBON BOOLEAN Information number 128, circuit breaker on by auto- recloser 130_BLKD BOOLEAN...
  • Page 523: Settings

    Section 14 1MRK 504 135-UEN A Monitoring 14.21.4 Settings Table 422: I103EF Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) 14.22 Function status fault protection for IEC 60870-5-103 I103FLTPROT 14.22.1 Functionality I103FLTPROT is used for fault indications in monitor direction.
  • Page 524: Function Block

    Section 14 1MRK 504 135-UEN A Monitoring 14.22.2 Function block I103FLTPROT BLOCK 64_STL1 65_STL2 66_STL3 67_STIN 68_TRGEN 69_TRL1 70_TRL2 71_TRL3 72_TRBKUP 73_SCL 74_FW 75_REV 76_TRANS 77_RECEV 78_ZONE1 79_ZONE2 80_ZONE3 81_ZONE4 82_ZONE5 84_STGEN 85_BFP 86_MTRL1 87_MTRL2 88_MTRL3 89_MTRN 90_IOC 91_IOC 92_IEF 93_IEF ARINPROG FLTLOC...
  • Page 525: Settings

    Section 14 1MRK 504 135-UEN A Monitoring Name Type Default Description 76_TRANS BOOLEAN Information number 76, signal transmitted 77_RECEV BOOLEAN Information number 77, signal received 78_ZONE1 BOOLEAN Information number 78, zone 1 79_ZONE2 BOOLEAN Information number 79, zone 2 80_ZONE3 BOOLEAN Information number 80, zone 3 81_ZONE4...
  • Page 526: Function Block

    Section 14 1MRK 504 135-UEN A Monitoring 14.23.2 Function block I103IED BLOCK 19_LEDRS 21_TESTM 22_SETCH 23_GRP1 24_GRP2 25_GRP3 26_GRP4 IEC10000292-2-en.vsd IEC10000292 V2 EN Figure 232: I103IED function block 14.23.3 Signals Table 425: I103IED Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting 19_LEDRS...
  • Page 527: Function Block

    Section 14 1MRK 504 135-UEN A Monitoring 14.24.2 Function block I103SUPERV BLOCK 32_MEASI 33_MEASU 37_IBKUP 38_VTFF 46_GRWA 47_GRAL IEC10000293-1-en.vsd IEC10000293 V1 EN Figure 233: I103SUPERV function block 14.24.3 Signals Table 427: I103SUPERV Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting 32_MEASI BOOLEAN...
  • Page 528: Function Block

    Section 14 1MRK 504 135-UEN A Monitoring I103USRDEF can be used, for example in mapping the INF numbers not supported directly by specific function blocks, like: INF17, INF18, INF20 or INF35. After connecting the appropriate signals to the I103USRDEF inputs, the user must also set the InfNo_x values in the settings.
  • Page 529: Settings

    Section 14 1MRK 504 135-UEN A Monitoring 14.25.4 Settings Table 430: I103USRDEF Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) InfNo_1 1 - 255 Information number for binary input 1 (1-255) InfNo_2 1 - 255...
  • Page 531: Section 15 Metering

    Section 15 1MRK 504 135-UEN A Metering Section 15 Metering 15.1 Pulse counter PCGGIO 15.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Pulse counter PCGGIO S00947 V1 EN 15.1.2 Functionality Pulse counter (PCGGIO) function counts externally generated binary pulses, for instance pulses coming from an external energy meter, for calculation of energy consumption values.
  • Page 532: Settings

    Section 15 1MRK 504 135-UEN A Metering Table 432: PCGGIO Output signals Name Type Description INVALID BOOLEAN The pulse counter value is invalid RESTART BOOLEAN The reported value does not comprise a complete integration cycle BLOCKED BOOLEAN The pulse counter function is blocked NEW_VAL BOOLEAN A new pulse counter value is generated...
  • Page 533 Section 15 1MRK 504 135-UEN A Metering The reporting time period can be set in the range from 1 second to 60 minutes and is synchronized with absolute system time. Interrogation of additional pulse counter values can be done with a command (intermediate reading) for a single counter. All active counters can also be read by IEC 61850.
  • Page 534: Technical Data

    Section 15 1MRK 504 135-UEN A Metering The BLOCKED signal is a steady signal and is set when the counter is blocked. There are two reasons why the counter is blocked: • The BLOCK input is set, or • The binary input module, where the counter input is situated, is inoperative. The NEW_VAL signal is a pulse signal.
  • Page 535: Function Block

    Section 15 1MRK 504 135-UEN A Metering 15.2.3 Function block ETPMMTR ACCST EAFPULSE STACC EARPULSE RSTACC ERFPULSE RSTDMD ERRPULSE EAFALM EARALM ERFALM ERRALM EAFACC EARACC ERFACC ERRACC MAXPAFD MAXPARD MAXPRFD MAXPRRD IEC09000104 V1 EN Figure 237: ETPMMTR function block 15.2.4 Signals Table 436: ETPMMTR Input signals...
  • Page 536: Settings

    Section 15 1MRK 504 135-UEN A Metering Name Type Description EARACC REAL Accumulated reverse active energy value ERFACC REAL Accumulated forward reactive energy value ERRACC REAL Accumulated reverse reactive energy value MAXPAFD REAL Maximum forward active power demand value for set interval MAXPARD REAL...
  • Page 537: Monitored Data

    Section 15 1MRK 504 135-UEN A Metering Name Values (Range) Unit Step Default Description LevZeroClampP 0.001 - 10000.000 0.001 10.000 Zero point clamping level at active Power LevZeroClampQ 0.001 - 10000.000 MVAr 0.001 10.000 Zero point clamping level at reactive Power DirEnergyAct Forward...
  • Page 538: Technical Data

    Section 15 1MRK 504 135-UEN A Metering Outputs are available for forward as well as reverse direction. The accumulated energy values can be reset from the local HMI reset menu or with input signal RSTACC. The maximum demand values for active and reactive power are calculated for the set time interval tEnergy.
  • Page 539: Section 16 Station Communication

    Section 16 1MRK 504 135-UEN A Station communication Section 16 Station communication 16.1 DNP3 protocol DNP3 (Distributed Network Protocol) is a set of communications protocols used to communicate data between components in process automation systems. For a detailed description of the DNP3 protocol, see the DNP3 Communication protocol manual. 16.2 IEC 61850-8-1 communication protocol 16.2.1...
  • Page 540: Communication Interfaces And Protocols

    Section 16 1MRK 504 135-UEN A Station communication The Denial of Service functions DOSLAN1 and DOSFRNT are included to limit the inbound network traffic. The communication can thus never compromise the primary functionality of the IED. The event system has a rate limiter to reduce CPU load. The event channel has a quota of 10 events/second after the initial 30 events/second.
  • Page 541: Technical Data

    Section 16 1MRK 504 135-UEN A Station communication 16.2.5 Technical data Table 444: Communication protocol Function Value Protocol TCP/IP Ethernet Communication speed for the IEDs 100 Mbit/s Protocol IEC 61850–8–1 Communication speed for the IEDs 100BASE-FX Protocol DNP3.0/TCP Communication speed for the IEDs 100BASE-FX Protocol, serial IEC 60870–5–103...
  • Page 542: Function Block

    Section 16 1MRK 504 135-UEN A Station communication 16.3.2 Function block GOOSEINTLKRCV BLOCK ^RESREQ ^RESGRANT ^APP1_OP ^APP1_CL APP1VAL ^APP2_OP ^APP2_CL APP2VAL ^APP3_OP ^APP3_CL APP3VAL ^APP4_OP ^APP4_CL APP4VAL ^APP5_OP ^APP5_CL APP5VAL ^APP6_OP ^APP6_CL APP6VAL ^APP7_OP ^APP7_CL APP7VAL ^APP8_OP ^APP8_CL APP8VAL ^APP9_OP ^APP9_CL APP9VAL ^APP10_OP...
  • Page 543 Section 16 1MRK 504 135-UEN A Station communication Table 446: GOOSEINTLKRCV Output signals Name Type Description RESREQ BOOLEAN Reservation request RESGRANT BOOLEAN Reservation granted APP1_OP BOOLEAN Apparatus 1 position is open APP1_CL BOOLEAN Apparatus 1 position is closed APP1VAL BOOLEAN Apparatus 1 position is valid APP2_OP BOOLEAN...
  • Page 544: Settings

    Section 16 1MRK 504 135-UEN A Station communication Name Type Description APP13_OP BOOLEAN Apparatus 13 position is open APP13_CL BOOLEAN Apparatus 13 position is closed APP13VAL BOOLEAN Apparatus 13 position is valid APP14_OP BOOLEAN Apparatus 14 position is open APP14_CL BOOLEAN Apparatus 14 position is closed APP14VAL...
  • Page 545: Function Block

    Section 16 1MRK 504 135-UEN A Station communication 16.4.2 Function block GOOSEBINRCV BLOCK ^OUT1 OUT1VAL ^OUT2 OUT2VAL ^OUT3 OUT3VAL ^OUT4 OUT4VAL ^OUT5 OUT5VAL ^OUT6 OUT6VAL ^OUT7 OUT7VAL ^OUT8 OUT8VAL ^OUT9 OUT9VAL ^OUT10 OUT10VAL ^OUT11 OUT11VAL ^OUT12 OUT12VAL ^OUT13 OUT13VAL ^OUT14 OUT14VAL ^OUT15 OUT15VAL...
  • Page 546: Settings

    Section 16 1MRK 504 135-UEN A Station communication Name Type Description OUT4VAL BOOLEAN Valid data on binary output 4 OUT5 BOOLEAN Binary output 5 OUT5VAL BOOLEAN Valid data on binary output 5 OUT6 BOOLEAN Binary output 6 OUT6VAL BOOLEAN Valid data on binary output 6 OUT7 BOOLEAN Binary output 7...
  • Page 547: Goose Vctr Configuration For Send And Receive Goosevctrconf

    Section 16 1MRK 504 135-UEN A Station communication The input of this GOOSE block must be linked in SMT by means of a cross to receive the binary values. The implementation for IEC61850 quality data handling is restricted to a simple level. If quality data validity is GOOD then the OUTxVAL output will be HIGH.
  • Page 548: Settings

    Section 16 1MRK 504 135-UEN A Station communication 16.5.3 Settings Table 451: GOOSEVCTRCONF Non group settings (basic) Name Values (Range) Unit Step Default Description SendOperation Send operation SendInterval 0.1 - 5.0 Send interval ReceiveOperation Receive operation ReceiveInterval 0.1 - 10.0 Receive interval 16.6 GOOSE voltage control receiving block...
  • Page 549: Signals

    Section 16 1MRK 504 135-UEN A Station communication 16.6.4 Signals Table 452: GOOSEVCTRRCV Input signals Name Type Default Description BLOCK BOOLEAN Block function Table 453: GOOSEVCTRRCV Output signals Name Type Description VCTR_RCV GROUP SIGNAL Output group connection to voltage control DATAVALID BOOLEAN Data valid for output signals...
  • Page 550: Functionality

    Section 16 1MRK 504 135-UEN A Station communication 16.7.2 Functionality GOOSEDPRCV is used to receive a double point value using IEC61850 protocol via GOOSE. 16.7.3 Function block GOOSEDPRCV BLOCK ^DPOUT DATAVALID COMMVALID TEST IEC10000249-1-en.vsd IEC10000249 V1 EN Figure 242: GOOSEDPRCV function block 16.7.4 Signals Table 454:...
  • Page 551: Goose Function Block To Receive An Integer Value Gooseintrcv

    Section 16 1MRK 504 135-UEN A Station communication The input of this GOOSE block must be linked in SMT by means of a cross to receive the double point values. The implementation for IEC61850 quality data handling is restricted to a simple level. If quality data validity is GOOD then the DATAVALID output will be HIGH.
  • Page 552: Settings

    Section 16 1MRK 504 135-UEN A Station communication Table 458: GOOSEINTRCV Output signals Name Type Description INTOUT INTEGER Integer output DATAVALID BOOLEAN Data valid for integer output COMMVALID BOOLEAN Communication valid for integer output TEST BOOLEAN Test output 16.8.5 Settings Table 459: GOOSEINTRCV Non group settings (basic) Name...
  • Page 553: Functionality

    Section 16 1MRK 504 135-UEN A Station communication 16.9.2 Functionality GOOSEMVRCV is used to receive measured value using IEC61850 protocol via GOOSE. 16.9.3 Function block GOOSEMVRCV BLOCK ^MVOUT DATAVALID COMMVALID TEST IEC10000251-1-en.vsd IEC10000251 V1 EN Figure 244: GOOSEMVRCV function block 16.9.4 Signals Table 460:...
  • Page 554: Goose Function Block To Receive A Single Point Value Goosesprcv

    Section 16 1MRK 504 135-UEN A Station communication The input of this GOOSE block must be linked in SMT by means of a cross to receive the float values. The implementation for IEC61850 quality data handling is restricted to a simple level. If quality data validity is GOOD then the DATAVALID output will be HIGH.
  • Page 555: Settings

    Section 16 1MRK 504 135-UEN A Station communication Table 464: GOOSESPRCV Output signals Name Type Description SPOUT BOOLEAN Single point output DATAVALID BOOLEAN Data valid for single point output COMMVALID BOOLEAN Communication valid for single point output TEST BOOLEAN Test output 16.10.5 Settings Table 465:...
  • Page 556: Settings

    Section 16 1MRK 504 135-UEN A Station communication principle. The master must have software that can interpret IEC 60870-5-103 communication messages. Function blocks available for the IEC 60870–5–103 protocol are described in sections Control and Monitoring.The Communication protocol manual for IEC 60870-5-103 includes the 650 series vendor specific IEC 60870-5-103 implementation.
  • Page 557: Iec 61850-8-1 Redundant Station Bus Communication

    Section 16 1MRK 504 135-UEN A Station communication Table 467: RS485103 Non group settings (basic) Name Values (Range) Unit Step Default Description SlaveAddress 1 - 255 Slave address BaudRate 9600 Bd 9600 Bd Baudrate on serial line 19200 Bd CycMeasRepTime 1.0 - 1800.0 Cyclic reporting time of measurments MasterTimeDomain...
  • Page 558 Section 16 1MRK 504 135-UEN A Station communication The communication is performed in parallel, that is the same data package is transmitted on both channels simultaneously. The received package identity from one channel is compared with the data package identity from the other channel. If the identity is the same, the last package is discarded.
  • Page 559: Function Block

    Section 16 1MRK 504 135-UEN A Station communication 16.12.3 Function block PRPSTATUS LAN1-A LAN1-B IEC13000011-1-en.vsd IEC13000011 V1 EN Figure 247: PRPSTATUS function block Table 468: PRPSTATUS Output signals Name Type Description LAN1-A BOOLEAN LAN1 channel A status LAN1-B BOOLEAN LAN1 channel B status 16.12.4 Setting parameters The PRPSTATUS function has no user settings.
  • Page 560: Generic Security Application Component Agsal

    Section 16 1MRK 504 135-UEN A Station communication Name Values (Range) Unit Step Default Description ExtLogSrv2Type External log server 2 type SYSLOG UDP/IP SYSLOG TCP/IP CEF TCP/IP ExtLogSrv2Port 1 - 65535 External log server 2 port number ExtLogSrv2IP 0 - 18 127.0.0.1 External log server 2 IP-address Address...
  • Page 561: Security Events On Protocols Secalarm

    Section 16 1MRK 504 135-UEN A Station communication 16.15 Security events on protocols SECALARM 16.15.1 Security alarm SECALARM 16.15.2 Signals Table 470: SECALARM Output signals Name Type Description EVENTID INTEGER EventId of the generated security event SEQNUMBER INTEGER Sequence number of the generated security event 16.15.3 Settings Table 471:...
  • Page 563: Section 17 Basic Ied Functions

    Section 17 1MRK 504 135-UEN A Basic IED functions Section 17 Basic IED functions 17.1 Self supervision with internal event list 17.1.1 Functionality The Self supervision with internal event list INTERRSIG and SELFSUPEVLST function reacts to internal system events generated by the different built-in self- supervision elements.
  • Page 564: Settings

    Section 17 1MRK 504 135-UEN A Basic IED functions 17.1.2.4 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600). 17.1.3 Internal event list SELFSUPEVLST 17.1.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification...
  • Page 565 Section 17 1MRK 504 135-UEN A Basic IED functions Fault Power supply fault Power supply module Watchdog I/O nodes TX overflow Fault Master resp. Supply fault ReBoot I/O INTERNAL FAIL Fault Internal Fail (CPU) I/O nodes = BIO xxxx = Inverted signal IEC09000390-1-en.vsd IEC09000390 V1 EN Figure 249:...
  • Page 566: Internal Signals

    Section 17 1MRK 504 135-UEN A Basic IED functions LIODEV FAIL >1 LIODEV STOPPED e.g. BIO1- ERROR LIODEV STARTED >1 SW Watchdog Error >1 Internal Fail WDOG STARVED Runtime Exec Error RTE FATAL ERROR >1 File System Error FTF FATAL ERROR RTE APP FAILED Runtime App Error RTE ALL APPS OK...
  • Page 567 Section 17 1MRK 504 135-UEN A Basic IED functions they are also called internal signals. The internal signals can be divided into two groups. • Standard signals are always presented in the IED, see Table 473. • Hardware dependent internal signals are collected depending on the hardware configuration, see Table 474.
  • Page 568: Run-Time Model

    Section 17 1MRK 504 135-UEN A Basic IED functions Name of signal Reasons for activation Time Synch Error This signal will be active when the source of the time synchronization is lost, or when the time system has to make a time reset.
  • Page 569: Technical Data

    Section 17 1MRK 504 135-UEN A Basic IED functions ADx_Low Controller ADx_High IEC05000296-3-en.vsd IEC05000296 V3 EN Figure 251: Simplified drawing of A/D converter for the IED. The technique to split the analog input signal into two A/D converter(s) with different amplification makes it possible to supervise the A/D converters under normal conditions where the signals from the two A/D converters should be identical.
  • Page 570: Time Synchronization

    Section 17 1MRK 504 135-UEN A Basic IED functions 17.2 Time synchronization 17.2.1 Functionality The time synchronization source selector is used to select a common source of absolute time for the IED when it is a part of a protection system. This makes it possible to compare event and disturbance data between all IEDs in a station automation system.
  • Page 571: Settings

    Section 17 1MRK 504 135-UEN A Basic IED functions 17.2.3.2 Settings Table 478: SNTP Non group settings (basic) Name Values (Range) Unit Step Default Description ServerIP-Add 0 - 255 0.0.0.0 Server IP-address Address RedServIP-Add 0 - 255 0.0.0.0 Redundant server IP-address Address 17.2.4 Time system, summer time begin DSTBEGIN...
  • Page 572: Time System, Summer Time Ends Dstend

    Section 17 1MRK 504 135-UEN A Basic IED functions 17.2.5 Time system, summer time ends DSTEND 17.2.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Time system, summer time ends DSTEND 17.2.5.2 Settings Table 480: DSTEND Non group settings (basic) Name Values (Range)
  • Page 573: Settings

    Section 17 1MRK 504 135-UEN A Basic IED functions 17.2.6.2 Settings Table 481: TIMEZONE Non group settings (basic) Name Values (Range) Unit Step Default Description NoHalfHourUTC -24 - 24 Number of half-hours from UTC 17.2.7 Time synchronization via IRIG-B 17.2.7.1 Identification Function description IEC 61850...
  • Page 574 Section 17 1MRK 504 135-UEN A Basic IED functions External Time tagging and general synchronization synchronization sources Protection Commu Events and control - nication functions SNTP Time- IRIG-B regulator SW- time IEC60870-5-103 IEC09000210-2-en.vsd IEC09000210 V2 EN Figure 252: Design of time system (clock synchronization) All time tagging is performed by the “software”...
  • Page 575: Real-Time Clock (Rtc) Operation

    Section 17 1MRK 504 135-UEN A Basic IED functions • The maximum error of the last used synchronization message • The time since the last used synchronization message • The rate accuracy of the internal clock in the function. 17.2.8.2 Real-time clock (RTC) operation The IED has a built-in real-time clock (RTC) with a resolution of one second.
  • Page 576: Synchronization Alternatives

    Section 17 1MRK 504 135-UEN A Basic IED functions 17.2.8.3 Synchronization alternatives Two main alternatives of external time synchronization are available. The synchronization message is applied either via any of the communication ports of the IED as a telegram message including date and time or via IRIG-B. Synchronization via SNTP SNTP provides a ping-pong method of synchronization.
  • Page 577: Technical Data

    Section 17 1MRK 504 135-UEN A Basic IED functions Synchronization via DNP The DNP3 communication can be the source for the coarse time synchronization, while the fine time synchronization needs a source with higher accuracy. See the communication protocol manual for a detailed description of the DNP3 protocol. Synchronization via IEC60870-5-103 The IEC60870-5-103 communication can be the source for the coarse time synchronization, while the fine tuning of the time synchronization needs a source with...
  • Page 578: Settings

    Section 17 1MRK 504 135-UEN A Basic IED functions 17.3.2.2 Settings Table 484: SETGRPS Non group settings (basic) Name Values (Range) Unit Step Default Description ActiveSetGrp SettingGroup1 SettingGroup1 ActiveSettingGroup SettingGroup2 SettingGroup3 SettingGroup4 MaxNoSetGrp 1 - 4 Max number of setting groups 1-4 17.3.3 Parameter setting groups ACTVGRP 17.3.3.1...
  • Page 579: Settings

    Section 17 1MRK 504 135-UEN A Basic IED functions Table 486: ACTVGRP Output signals Name Type Description GRP1 BOOLEAN Setting group 1 is active GRP2 BOOLEAN Setting group 2 is active GRP3 BOOLEAN Setting group 3 is active GRP4 BOOLEAN Setting group 4 is active SETCHGD BOOLEAN...
  • Page 580: Test Mode Functionality Testmode

    Section 17 1MRK 504 135-UEN A Basic IED functions ACTIVATE GROUP 4 ACTIVATE GROUP 3 ACTIVATE GROUP 2 ACTIVATE GROUP 1 ACTVGRP IOx-Bly1 Æ ACTGRP1 GRP1 IOx-Bly2 Æ ACTGRP2 GRP2 IOx-Bly3 Æ ACTGRP3 GRP3 IOx-Bly4 Æ GRP4 ACTGRP4 SETCHGD IEC09000063_en_1.vsd IEC09000063 V1 EN Figure 255: Connection of the function to external circuits...
  • Page 581: Function Block

    Section 17 1MRK 504 135-UEN A Basic IED functions actually set and configured values within the IED. No settings will be changed, thus mistakes are avoided. Forcing of binary output signals is only possible when the IED is in test mode. 17.4.3 Function block TESTMODE...
  • Page 582: Operation Principle

    Section 17 1MRK 504 135-UEN A Basic IED functions 17.4.6 Operation principle Put the IED into test mode to test functions in the IED. Set the IED in test mode by • configuration, activating the input SIGNAL on the function block TESTMODE. •...
  • Page 583: Change Lock Function Chnglck

    CHNGLCK input, that logic must be designed so that it cannot permanently issue a logical one to the CHNGLCK input. If such a situation would occur in spite of these precautions, then please contact the local ABB representative for remedial action.
  • Page 584: Settings

    Section 17 1MRK 504 135-UEN A Basic IED functions Table 491: CHNGLCK Output signals Name Type Description ACTIVE BOOLEAN Change lock active OVERRIDE BOOLEAN Change lock override 17.5.5 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600) 17.5.6 Operation principle...
  • Page 585: Functionality

    Section 17 1MRK 504 135-UEN A Basic IED functions 17.6.2 Functionality IED identifiers (TERMINALID) function allows the user to identify the individual IED in the system, not only in the substation, but in a whole region or a country. Use only characters A-Z, a-z and 0-9 in station, object and unit names. 17.6.3 Settings Table 492:...
  • Page 586: Settings

    Section 17 1MRK 504 135-UEN A Basic IED functions The settings are visible on the local HMI , under Main menu/Diagnostics/IED status/Product identifiers They are very helpful in case of support process (such as repair or maintenance). 17.7.3 Settings The function does not have any parameters available in the local HMI or PCM600. 17.8 Primary system values PRIMVAL 17.8.1...
  • Page 587: Identification

    Section 17 1MRK 504 135-UEN A Basic IED functions The SMAI function is used within PCM600 in direct relation with the Signal Matrix tool or the Application Configuration tool. The SMAI function blocks for the 650 series of products are possible to set for two cycle times either 5 or 20ms.
  • Page 588: Signals

    Section 17 1MRK 504 135-UEN A Basic IED functions 17.9.4 Signals Table 494: SMAI_20_1 Input signals Name Type Default Description BLOCK BOOLEAN Block group 1 DFTSPFC REAL 20.0 Number of samples per fundamental cycle used for DFT calculation REVROT BOOLEAN Reverse rotation group 1 GRP1L1 STRING...
  • Page 589: Settings

    Section 17 1MRK 504 135-UEN A Basic IED functions Table 497: SMAI_20_12 Output signals Name Type Description AI3P GROUP SIGNAL Grouped three phase signal containing data from inputs 1-4 GROUP SIGNAL Quantity connected to the first analog input GROUP SIGNAL Quantity connected to the second analog input GROUP SIGNAL Quantity connected to the third analog input...
  • Page 590 Section 17 1MRK 504 135-UEN A Basic IED functions Table 499: SMAI_20_1 Non group settings (advanced) Name Values (Range) Unit Step Default Description Negation Negation NegateN Negate3Ph Negate3Ph+N MinValFreqMeas 5 - 200 Limit for frequency calculation in % of UBase Even if the AnalogInputType setting of a SMAI block is set to Current, the MinValFreqMeas setting is still visible.
  • Page 591: Operation Principle

    Section 17 1MRK 504 135-UEN A Basic IED functions Even if the AnalogInputType setting of a SMAI block is set to Current, the MinValFreqMeas setting is still visible. This means that the minimum level for current amplitude is based on UBase. For example, if UBase is 20000, the minimum amplitude for current is 20000 * 10% = 2000.
  • Page 592 Section 17 1MRK 504 135-UEN A Basic IED functions • It is not mandatory to connect all the inputs of SMAI function. However, it is very important that same set of three phase analog signals should be connected to one SMAI function.
  • Page 593 Section 17 1MRK 504 135-UEN A Basic IED functions reference will be used based on the calculated signal frequency from own group. DFTReference set to External DFT Ref will use reference based on input signal DFTSPFC. Settings DFTRefExtOut and DFTReference shall be set to default value InternalDFTRef if no VT inputs are available.
  • Page 594 Section 17 1MRK 504 135-UEN A Basic IED functions Task time group 1 Task time group 2 (5ms) (20ms) SMAI_20_1:1 SMAI_20_1:2 BLOCK SPFCOUT BLOCK SPFCOUT DFTSPFC AI3P DFTSPFC AI3P REVROT REVROT GRP1L1 GRP1L1 GRP1L2 GRP1L2 GRP1L3 GRP1L3 GRP1N GRP1N Task time group 1 (5ms) Task time group 2 (20ms) SMAI instance 3 phase group SMAI instance 3 phase group...
  • Page 595: Summation Block 3 Phase 3Phsum

    Section 17 1MRK 504 135-UEN A Basic IED functions 17.10 Summation block 3 phase 3PHSUM 17.10.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Summation block 3 phase 3PHSUM 17.10.2 Functionality Summation block 3 phase function 3PHSUM is used to get the sum of two sets of three-phase analog signals (of the same type) for those IED functions that might need 17.10.3 Function block...
  • Page 596: Settings

    Section 17 1MRK 504 135-UEN A Basic IED functions Table 503: 3PHSUM Output signals Name Type Description AI3P GROUP SIGNAL Linear combination of two connected three phase inputs GROUP SIGNAL Linear combination of input 1 signals from both SMAI blocks GROUP SIGNAL Linear combination of input 2 signals from both SMAI blocks...
  • Page 597: Identification

    Section 17 1MRK 504 135-UEN A Basic IED functions 17.11.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Global base values GBASVAL 17.11.2 Functionality Global base values function (GBASVAL) is used to provide global values, common for all applicable functions within the IED.
  • Page 598: Settings

    Section 17 1MRK 504 135-UEN A Basic IED functions • local, through the local HMI • remote, through the communication ports The IED users can be created, deleted and edited only with PCM600 IED user management tool. IEC12000202-1-en.vsd IEC12000202 V1 EN Figure 262: PCM600 user management tool 17.12.3...
  • Page 599: Authorization Handling In The Ied

    Section 17 1MRK 504 135-UEN A Basic IED functions Table 507: Pre-defined user types User type Access rights SystemOperator Control from local HMI, no bypass ProtectionEngineer All settings DesignEngineer Application configuration (including SMT, GDE and CMT) UserAdministrator User and password administration for the IED The IED users can be created, deleted and edited only with the IED User Management within PCM600.
  • Page 600: Authority Management Authman

    Section 17 1MRK 504 135-UEN A Basic IED functions comes to password, upon pressing the key, the following characters will show up: “✳✳✳✳✳✳✳✳”. The user must scroll for every letter in the password. After all the letters are introduced (passwords are case sensitive) choose OK and press the again.
  • Page 601: Ftp Access With Password Ftpaccs

    Section 17 1MRK 504 135-UEN A Basic IED functions 17.14 FTP access with password FTPACCS 17.14.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number FTP access with SSL FTPACCS 17.14.2 FTP access with SSL FTPACCS The FTP Client defaults to the best possible security mode when trying to negotiate with SSL.
  • Page 602: Authority Status Athstat

    Section 17 1MRK 504 135-UEN A Basic IED functions 17.15 Authority status ATHSTAT 17.15.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Authority status ATHSTAT 17.15.2 Functionality Authority status ATHSTAT function is an indication function block for user log-on activity.
  • Page 603: Denial Of Service

    Section 17 1MRK 504 135-UEN A Basic IED functions • the fact that at least one user has tried to log on wrongly into the IED and it was blocked (the output USRBLKED) • the fact that at least one user is logged on (the output LOGGEDON) Whenever one of the two events occurs, the corresponding output (USRBLKED or LOGGEDON) is activated.
  • Page 604: Settings

    Section 17 1MRK 504 135-UEN A Basic IED functions 17.16.2.4 Settings The function does not have any parameters available in the local HMI or PCM600. 17.16.2.5 Monitored data Table 512: DOSFRNT Monitored data Name Type Values (Range) Unit Description State INTEGER 0=Off Frame rate control state...
  • Page 605: Function Block

    Section 17 1MRK 504 135-UEN A Basic IED functions 17.16.3.2 Function block DOSLAN1 LINKUP WARNING ALARM IEC09000134-1-en.vsd IEC09000134 V1 EN Figure 265: DOSLAN1 function block 17.16.3.3 Signals Table 513: DOSLAN1 Output signals Name Type Description LINKUP BOOLEAN Ethernet link status WARNING BOOLEAN Frame rate is higher than normal state...
  • Page 606: Operation Principle

    Section 17 1MRK 504 135-UEN A Basic IED functions 17.16.4 Operation principle The Denial of service functions (DOSLAN1 and DOSFRNT) measures the IED load from communication and, if necessary, limit it for not jeopardizing the IEDs control and protection functionality due to high CPU load. The function has the following outputs: •...
  • Page 607: Section 18 Ied Physical Connections

    Section 18 1MRK 504 135-UEN A IED physical connections Section 18 IED physical connections 18.1 Protective earth connections The IED shall be earthed with a 16.0 mm flat copper cable. The earth lead should be as short as possible, less than 1500 mm. Additional length is required for door mounting.
  • Page 608: Auxiliary Supply Voltage Input

    Section 18 1MRK 504 135-UEN A IED physical connections Table 515: Analog input modules TRM Terminal 6I + 4U 8I + 2U 4I + 1I + 5U 4I + 6U X101-1, 2 1/5A 1/5A 1/5A 1/5A X101-3, 4 1/5A 1/5A 1/5A 1/5A X101-5, 6...
  • Page 609: Binary Inputs

    Section 18 1MRK 504 135-UEN A IED physical connections Table 517: Auxiliary voltage supply of 110...250 V DC or 100...240 V AC Case Terminal Description 3U full 19” X420-1 - Input X420-3 + Input Table 518: Auxiliary voltage supply of 48-125 V DC Case Terminal Description...
  • Page 610 Section 18 1MRK 504 135-UEN A IED physical connections PCM600 info Terminal Description Hardware module Hardware channel instance X304-13 Common - for inputs 10-12 X304-14 Binary input 10 + COM_101 BI10 X304-15 Binary input 11 + COM_101 BI11 X304-16 Binary input 12 + COM_101 BI12 Table 521:...
  • Page 611 Section 18 1MRK 504 135-UEN A IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X329-6 Binary input 3 + BIO_4 X329-7 X329-8 Common - for inputs 4-5 X329-9 Binary input 4 + BIO_4 X329-10 Binary input 5 + BIO_4 X329-11 X329-12...
  • Page 612: Outputs

    Section 18 1MRK 504 135-UEN A IED physical connections Table 524: Binary inputs X339, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance X339-1 - for input 1 BIO_6 X339-2 Binary input 1 + BIO_6 X339-3 X339-4 Common - for inputs 2-3 X339-5 Binary input 2 +...
  • Page 613 Section 18 1MRK 504 135-UEN A IED physical connections Table 525: Output contacts X317, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance Power output 1, normally open (TCS) X317-1 PSM_102 BO1_PO_TCS X317-2 Power output 2, normally open (TCS) X317-3 PSM_102...
  • Page 614: Outputs For Signalling

    Section 18 1MRK 504 135-UEN A IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X326-4 X326-5 Power output 3, normally open BIO_4 BO3_PO X326-6 Table 528: Output contacts X331, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance...
  • Page 615 Section 18 1MRK 504 135-UEN A IED physical connections Table 530: Output contacts X317, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance X317-13 Signal output 1, normally open PSM_102 BO7_SO X317-14 X317-15 Signal output 2, normally open PSM_102 BO8_SO X317-16...
  • Page 616 Section 18 1MRK 504 135-UEN A IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X326-16 Signal output 6, normally closed BIO_4 BO9_SO X326-17 Signal output 6, normally open X326-18 Signal output 6, common Table 533: Output contacts X331, 3U full 19” Terminal Description PCM600 info...
  • Page 617: Irf

    Section 18 1MRK 504 135-UEN A IED physical connections 18.3.3 The IRF contact functions as a change-over output contact for the self-supervision system of the IED. Under normal operating conditions, the IED is energized and one of the two contacts is closed. When a fault is detected by the self-supervision system or the auxiliary voltage is disconnected, the closed contact drops off and the other contact closes.
  • Page 618: Station Communication Rear Connection

    Section 18 1MRK 504 135-UEN A IED physical connections The default IP address of the IED through this port is 10.1.150.3. The front port supports TCP/IP protocol. A standard Ethernet CAT 5 crossover cable is used with the front port. 18.4.2 Station communication rear connection The default IP address of the IED through the Ethernet connection is 192.168.1.10.
  • Page 619: Communication Interfaces And Protocols

    The latest versions of the connection diagrams can be downloaded from http://www.abb.com/substationautomation. Connection diagrams for Customized products Connection diagram, 650 series 1.3 1MRK006501-AD Connection diagrams for Configured products Connection diagram, RET650 1.3, (2W/1CB) A01 1MRK006501-GD Connection diagram, RET650 1.3, (3W/1CB) A05 1MRK006501-FD Connection diagram, RET650 1.3, (2OLTCControl) A07 1MRK006501-ED...
  • Page 621: Section 19 Technical Data

    Section 19 1MRK 504 135-UEN A Technical data Section 19 Technical data 19.1 Dimensions Table 537: Dimensions of the IED - 3U full 19" rack Description Value Width 444 mm (17.48 inches) Height 132 mm (5.20 inches), 3U Depth 249.5 mm (9.82 inches) Weight box 10 kg (<22.04 lbs) 19.2...
  • Page 622: Energizing Inputs

    Section 19 1MRK 504 135-UEN A Technical data 19.3 Energizing inputs Table 539: TRM — Energizing quantities, rated values and limits for transformer inputs Description Value Frequency Rated frequency f 50 or 60 Hz Operating range ± 10% Current inputs Rated current I 0.1 or 0.5 A 1 or 5 A...
  • Page 623: Signal Outputs

    Section 19 1MRK 504 135-UEN A Technical data 19.5 Signal outputs Table 541: Signal output and IRF output Description Value Rated voltage 250 V AC/DC Continuous contact carry Make and carry for 3.0 s 10 A Make and carry 0.5 s 30 A Breaking capacity when the control-circuit time ≤0.5 A/≤0.1 A/≤0.04 A...
  • Page 624: Data Communication Interfaces

    Section 19 1MRK 504 135-UEN A Technical data 19.7 Data communication interfaces Table 544: Ethernet interfaces Ethernet interface Protocol Cable Data transfer rate 100BASE-TX CAT 6 S/FTP or better 100 MBits/s 100BASE-FX TCP/IP protocol Fibre-optic cable with 100 MBits/s LC connector Table 545: Fibre-optic communication link Wave length...
  • Page 625: Enclosure Class

    Section 19 1MRK 504 135-UEN A Technical data Type Value Conditions Supported bit rates 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 Maximum number of 650 IEDs supported on the same bus Max. cable length 925 m (3000 ft) Cable: AWG24 or better, stub lines shall be avoided Table 549:...
  • Page 626: Environmental Conditions And Tests

    Section 19 1MRK 504 135-UEN A Technical data 19.10 Environmental conditions and tests Table 552: Environmental conditions Description Value Operating temperature range -25...+55ºC (continuous) Short-time service temperature range -40...+70ºC (<16h) Note: Degradation in MTBF and HMI performance outside the temperature range of -25...+55ºC Relative humidity <93%, non-condensing Atmospheric pressure...
  • Page 627: Section 20 Ied And Functionality Tests

    Section 20 1MRK 504 135-UEN A IED and functionality tests Section 20 IED and functionality tests 20.1 Electromagnetic compatibility tests Table 554: Electromagnetic compatibility tests Description Type test value Reference 100 kHz and 1 MHz burst IEC 61000-4-18, level 3 disturbance test IEC 60255-22-1 ANSI C37.90.1-2012...
  • Page 628 Section 20 1MRK 504 135-UEN A IED and functionality tests Description Type test value Reference • Continuous 100 A/m Pulse magnetic field immunity 1000A/m IEC 61000–4–9, level 5 test Damped oscillatory magnetic 100A/m, 100 kHz and 1MHz IEC 6100–4–10, level 5 field Power frequency immunity test IEC 60255-22-7, class A...
  • Page 629: Insulation Tests

    Section 20 1MRK 504 135-UEN A IED and functionality tests 20.2 Insulation tests Table 555: Insulation tests Description Type test value Reference Dielectric tests: IEC 60255-5 ANSI C37.90-2005 • Test voltage 2 kV, 50 Hz, 1 min 1 kV, 50 Hz, 1 min, communication Impulse voltage test: IEC 60255-5...
  • Page 630: Emc Compliance

    Section 20 1MRK 504 135-UEN A IED and functionality tests 20.5 EMC compliance Table 558: EMC compliance Description Reference EMC directive 2004/108/EC Standard EN 50263 (2000) EN 60255-26 (2007) Technical manual...
  • Page 631: Section 21 Time Inverse Characteristics

    Section 21 1MRK 504 135-UEN A Time inverse characteristics Section 21 Time inverse characteristics 21.1 Application In order to assure time selectivity between different overcurrent protections in different points in the network different time delays for the different relays are normally used.
  • Page 632 Section 21 1MRK 504 135-UEN A Time inverse characteristics Time Fault point position en05000131.vsd IEC05000131 V1 EN Figure 269: Inverse time overcurrent characteristics with inst. function The inverse time characteristic makes it possible to minimize the fault clearance time and still assure the selectivity between protections. To assure selectivity between protections there must be a time margin between the operation time of the protections.
  • Page 633 Section 21 1MRK 504 135-UEN A Time inverse characteristics Feeder I> I> Time axis en05000132.vsd IEC05000132 V1 EN Figure 270: Selectivity steps for a fault on feeder B1 where: is The fault occurs is Protection B1 trips is Breaker at B1 opens is Protection A1 resets In the case protection B1 shall operate without any intentional delay (instantaneous).
  • Page 634: Operation Principle

    Section 21 1MRK 504 135-UEN A Time inverse characteristics • If there is a risk of intermittent faults. If the current relay, close to the faults, starts and resets there is a risk of unselective trip from other protections in the system. •...
  • Page 635 Section 21 1MRK 504 135-UEN A Time inverse characteristics æ ö æ ö - × × × ç ÷ ç ÷ è ø > è ø (Equation 109) EQUATION1190 V1 EN where: is the operating time of the protection The time elapsed to the moment of trip is reached when the integral fulfils according to equation 110, in addition to the constant time delay: æ...
  • Page 636 Section 21 1MRK 504 135-UEN A Time inverse characteristics Operate time tMin Current IMin IEC05000133-3-en.vsd IEC05000133 V2 EN Figure 271: Minimum time-lag operation for the IEC curves In order to fully comply with IEC curves definition setting parameter tMin shall be set to the value which is equal to the operating time of the selected IEC inverse time curve for measured current of twenty times the set current start value.
  • Page 637: Inverse Time Characteristics

    Section 21 1MRK 504 135-UEN A Time inverse characteristics The RD inverse curve gives a logarithmic delay, as used in the Combiflex protection RXIDG. The curve enables a high degree of selectivity required for sensitive residual earth-fault current protection, with ability to detect high-resistive earth faults. The curve is described by equation 114: æ...
  • Page 638 Section 21 1MRK 504 135-UEN A Time inverse characteristics Table 560: IEC Inverse time characteristics Function Range or value Accuracy Operating characteristic: k = (0.05-999) in steps of 0.01 æ ö ç ÷ × ç ÷ è ø EQUATION1251-SMALL V1 EN I = I measured IEC Normal Inverse...
  • Page 639 Section 21 1MRK 504 135-UEN A Time inverse characteristics Table 562: Inverse time characteristics for overvoltage protection Function Range or value Accuracy Type A curve: k = (0.05-1.10) in ±5% +60 ms steps of 0.01 æ ö > ç ÷ è...
  • Page 640 Section 21 1MRK 504 135-UEN A Time inverse characteristics Table 564: Inverse time characteristics for residual overvoltage protection Function Range or value Accuracy Type A curve: k = (0.05-1.10) in steps of ±5% +70 ms 0.01 æ ö > ç ÷...
  • Page 641 Section 21 1MRK 504 135-UEN A Time inverse characteristics A070750 V2 EN Figure 272: ANSI Extremely inverse time characteristics Technical manual...
  • Page 642 Section 21 1MRK 504 135-UEN A Time inverse characteristics A070751 V2 EN Figure 273: ANSI Very inverse time characteristics Technical manual...
  • Page 643 Section 21 1MRK 504 135-UEN A Time inverse characteristics A070752 V2 EN Figure 274: ANSI Normal inverse time characteristics Technical manual...
  • Page 644 Section 21 1MRK 504 135-UEN A Time inverse characteristics A070753 V2 EN Figure 275: ANSI Moderately inverse time characteristics Technical manual...
  • Page 645 Section 21 1MRK 504 135-UEN A Time inverse characteristics A070817 V2 EN Figure 276: ANSI Long time extremely inverse time characteristics Technical manual...
  • Page 646 Section 21 1MRK 504 135-UEN A Time inverse characteristics A070818 V2 EN Figure 277: ANSI Long time very inverse time characteristics Technical manual...
  • Page 647 Section 21 1MRK 504 135-UEN A Time inverse characteristics A070819 V2 EN Figure 278: ANSI Long time inverse time characteristics Technical manual...
  • Page 648 Section 21 1MRK 504 135-UEN A Time inverse characteristics A070820 V2 EN Figure 279: IEC Normal inverse time characteristics Technical manual...
  • Page 649 Section 21 1MRK 504 135-UEN A Time inverse characteristics A070821 V2 EN Figure 280: IEC Very inverse time characteristics Technical manual...
  • Page 650 Section 21 1MRK 504 135-UEN A Time inverse characteristics A070822 V2 EN Figure 281: IEC Inverse time characteristics Technical manual...
  • Page 651 Section 21 1MRK 504 135-UEN A Time inverse characteristics A070823 V2 EN Figure 282: IEC Extremely inverse time characteristics Technical manual...
  • Page 652 Section 21 1MRK 504 135-UEN A Time inverse characteristics A070824 V2 EN Figure 283: IEC Short time inverse time characteristics Technical manual...
  • Page 653 Section 21 1MRK 504 135-UEN A Time inverse characteristics A070825 V2 EN Figure 284: IEC Long time inverse time characteristics Technical manual...
  • Page 654 Section 21 1MRK 504 135-UEN A Time inverse characteristics A070826 V2 EN Figure 285: RI-type inverse time characteristics Technical manual...
  • Page 655 Section 21 1MRK 504 135-UEN A Time inverse characteristics A070827 V2 EN Figure 286: RD-type inverse time characteristics Technical manual...
  • Page 656 Section 21 1MRK 504 135-UEN A Time inverse characteristics GUID-ACF4044C-052E-4CBD-8247-C6ABE3796FA6 V1 EN Figure 287: Inverse curve A characteristic of overvoltage protection Technical manual...
  • Page 657 Section 21 1MRK 504 135-UEN A Time inverse characteristics GUID-F5E0E1C2-48C8-4DC7-A84B-174544C09142 V1 EN Figure 288: Inverse curve B characteristic of overvoltage protection Technical manual...
  • Page 658 Section 21 1MRK 504 135-UEN A Time inverse characteristics GUID-A9898DB7-90A3-47F2-AEF9-45FF148CB679 V1 EN Figure 289: Inverse curve C characteristic of overvoltage protection Technical manual...
  • Page 659 Section 21 1MRK 504 135-UEN A Time inverse characteristics GUID-35F40C3B-B483-40E6-9767-69C1536E3CBC V1 EN Figure 290: Inverse curve A characteristic of undervoltage protection Technical manual...
  • Page 660 Section 21 1MRK 504 135-UEN A Time inverse characteristics GUID-B55D0F5F-9265-4D9A-A7C0-E274AA3A6BB1 V1 EN Figure 291: Inverse curve B characteristic of undervoltage protection Technical manual...
  • Page 661: Section 22 Glossary

    Section 22 1MRK 504 135-UEN A Glossary Section 22 Glossary Alternating current Actual channel Application configuration tool within PCM600 A/D converter Analog-to-digital converter ADBS Amplitude deadband supervision Analog input ANSI American National Standards Institute Autoreclosing ASCT Auxiliary summation current transformer Adaptive signal detection ASDU Application service data unit...
  • Page 662 Section 22 1MRK 504 135-UEN A Glossary Carrier receive Cyclic redundancy check CROB Control relay output block Carrier send Current transformer Communication unit Capacitive voltage transformer Delayed autoreclosing DARPA Defense Advanced Research Projects Agency (The US developer of the TCP/IP protocol etc.) DBDL Dead bus dead line DBLL...
  • Page 663 Section 22 1MRK 504 135-UEN A Glossary FOX 20 Modular 20 channel telecommunication system for speech, data and protection signals FOX 512/515 Access multiplexer FOX 6Plus Compact time-division multiplexer for the transmission of up to seven duplex channels of digital data over optical fibers File Transfer Protocal Function type...
  • Page 664 Section 22 1MRK 504 135-UEN A Glossary specifications from the PCI SIG (Special Interest Group) for the electrical EMF (Electromotive force). IEEE 1686 Standard for Substation Intelligent Electronic Devices (IEDs) Cyber Security Capabilities Intelligent electronic device I-GIS Intelligent gas-insulated switchgear Instance When several occurrences of the same function are available in the IED, they are referred to as instances of that function.
  • Page 665 Section 22 1MRK 504 135-UEN A Glossary OLTC On-load tap changer OTEV Disturbance data recording initiated by other event than start/pick-up Over-voltage Overreach A term used to describe how the relay behaves during a fault condition. For example, a distance relay is overreaching when the impedance presented to it is smaller than the apparent impedance to the fault applied to the balance point, that is, the set reach.
  • Page 666 Section 22 1MRK 504 135-UEN A Glossary SMA connector Subminiature version A, A threaded connector with constant impedance. Signal matrix tool within PCM600 Station monitoring system SNTP Simple network time protocol – is used to synchronize computer clocks on local area networks. This reduces the requirement to have accurate hardware clocks in every embedded system in a network.
  • Page 667 Section 22 1MRK 504 135-UEN A Glossary User management tool Underreach A term used to describe how the relay behaves during a fault condition. For example, a distance relay is underreaching when the impedance presented to it is greater than the apparent impedance to the fault applied to the balance point, that is, the set reach.
  • Page 670 Contact us Note: For more information please contact: We reserve the right to make technical changes or modify the contents of this document without prior notice. ABB AB ABB AB does not accept any responsibility whatsoever for potential Grid Automation Products errors or possible lack of information in this document.

Table of Contents