ABB Relion 670 Series RES670 Technical Manual

Phasor measurement unit 2.1 ansi
Table of Contents

Advertisement

Quick Links

®
Relion
670 series
Phasor measurement unit RES670 2.1 ANSI
Technical manual

Advertisement

Table of Contents
loading

Summary of Contents for ABB Relion 670 Series RES670

  • Page 1 ® Relion 670 series Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 3 Document ID: 1MRK 511 365-UUS Issued: February 2016 Revision: A Product version: 2.1 © Copyright 2016 ABB. All rights reserved...
  • Page 4 Copyright This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose. The software and hardware described in this document is furnished under a license and may be used or disclosed only in accordance with the terms of such license.
  • Page 5 This document has been carefully checked by ABB but deviations cannot be completely ruled out. In case any errors are detected, the reader is kindly requested to notify the manufacturer.
  • Page 6 (EMC Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standard EN 60255-26 for the EMC directive, and with the product standards EN 60255-1 and EN 60255-27 for the low voltage directive.
  • Page 7: Table Of Contents

    Table of contents Table of contents Section 1 Introduction................31 This manual.................... 31 Intended audience.................. 31 Product documentation................32 Product documentation set..............32 Document revision history..............33 Related documents................34 Document symbols and conventions............34 Symbols.....................34 Document conventions..............35 IEC61850 edition 1 / edition 2 mapping..........36 Section 2 Available functions..............
  • Page 8 Table of contents Local HMI screen behaviour..............73 Identification..................73 Settings....................73 Local HMI signals................... 73 Identification..................73 Function block................... 74 Signals....................74 Basic part for LED indication module............75 Identification..................75 Function block................... 75 Signals....................75 Settings....................76 LCD part for HMI function keys control module........77 Identification..................
  • Page 9 Table of contents Protocol reporting via IEEE 1344 and C37.118 PMUREPORT.... 110 Identification..................110 Functionality..................110 Function block................. 113 Signals.....................115 Settings....................120 Monitored data.................132 Operation principle................137 Frequency reporting..............139 Reporting filters................140 Scaling Factors for ANALOGREPORT channels....... 141 Technical data................. 143 Section 7 Impedance protection............145 Power swing detection ZMRPSB (68)..........
  • Page 10 Table of contents Technical data................. 168 Section 8 Current protection..............169 Four step phase overcurrent protection OC4PTOC(51/67)....169 Identification..................169 Functionality..................169 Function block................. 170 Signals.....................170 Settings....................172 Monitored data.................178 Operation principle................179 Technical data................. 187 Four step residual overcurrent protection, (Zero sequence or negative sequence directionality) EF4PTOC (51N/67N)......
  • Page 11 Table of contents Operation principle................220 Operating quantity within the function........220 Internal polarizing facility of the function........221 External polarizing for negative sequence function....222 Internal negative sequence protection structure......222 Four negative sequence overcurrent stages......222 Directional supervision element with integrated directional comparison function..............
  • Page 12 Table of contents Technical data................. 258 Directional overpower protection GOPPDOP (32)........258 Identification..................258 Functionality..................258 Function block................. 259 Signals.....................260 Settings....................260 Monitored data.................262 Operation principle................262 Low pass filtering................265 Calibration of analog inputs............265 Technical data................. 267 Section 9 Voltage protection............. 269 Two step undervoltage protection UV2PTUV (27)........269 Identification..................
  • Page 13 Table of contents Section 10 Frequency protection............297 Underfrequency protection SAPTUF (81)..........297 Identification..................297 Functionality..................297 Function block................. 297 Signals.....................298 Settings....................298 Monitored data.................299 Operation principle................299 Measurement principle............... 299 Time delay.................. 300 Voltage dependent time delay............ 300 Blocking..................302 Design..................302 Overfrequency protection SAPTOF (81)..........303 Identification..................
  • Page 14 Table of contents Technical data................. 312 Frequency time accumulation protection function FTAQFVR (81A)..313 Identification..................313 Functionality ................... 313 Function block ................313 Signals.....................314 Settings....................315 Monitored data.................315 Operation principle................315 Section 11 Multipurpose protection............. 321 General current and voltage protection CVGAPC........ 321 Identification..................
  • Page 15 Table of contents Function block................. 359 Signals.....................360 Settings....................360 Operation principle................361 Technical data................. 362 Fuse failure supervision FUFSPVC............362 Identification..................363 Functionality..................363 Function block................. 363 Signals.....................364 Settings....................365 Monitored data.................366 Operation principle................366 Zero and negative sequence detection........366 Delta current and delta voltage detection........368 Dead line detection..............371 Main logic...................
  • Page 16 Table of contents Function block................. 385 Signals.....................386 Settings....................386 Operation principle................386 Single point generic control 8 signals SPC8GAPC.......386 Identification..................386 Functionality..................386 Function block................. 387 Signals.....................387 Settings....................388 Operation principle................388 AutomationBits, command function for DNP3.0 AUTOBITS....389 Identification..................389 Functionality..................389 Function block.................
  • Page 17 Table of contents Functionality..................421 Function block................. 421 Signals.....................421 Settings....................422 Operation principle................422 Technical data................. 423 Logic for group warning WRNCALH............. 423 Identification..................423 Functionality..................423 Function block................. 424 Signals.....................424 Settings....................425 Operation principle................425 Technical data................. 425 Logic for group indication INDCALH.............426 Identification..................
  • Page 18 Table of contents OR function block OR..............433 Function block................433 Signals..................433 Technical data................433 Pulse timer function block PULSETIMER........434 Function block................434 Signals..................434 Settings..................434 Technical data................434 Reset-set with memory function block RSMEMORY.......435 Function block................435 Signals..................435 Settings..................436 Technical data................436 Set-reset with memory function block SRMEMORY.......
  • Page 19 Table of contents Function block................444 Signals..................444 Technical data................445 Invalid logic function block INVALIDQT........... 445 Function block................446 Signals..................446 Technical data................447 Inverter function block INVERTERQT..........447 Function block................447 Signals..................448 Technical data................448 ORQT function block............... 448 Function block................448 Signals..................448 Technical data................
  • Page 20 Table of contents Fixed signals FXDSIGN................457 Identification..................457 Functionality..................457 Function block................. 457 Signals.....................457 Settings....................458 Operation principle................458 Boolean 16 to Integer conversion B16I..........458 Identification..................458 Function block................. 459 Signals.....................459 Monitored data.................460 Settings....................460 Operation principle................460 Technical data................. 461 Boolean 16 to Integer conversion with logic node representation BTIGAPC....................
  • Page 21 Table of contents Operation principle................470 Technical data................. 471 Elapsed time integrator with limit transgression and overflow supervision TEIGAPC................472 Identification..................472 Functionality..................472 Function block................. 473 Signals.....................473 Settings....................473 Operation principle................474 Operation accuracy..............475 Memory storage................475 Technical data................. 476 Comparator for integer inputs INTCOMP..........476 Identification..................
  • Page 22 Table of contents Measurements CVMMXN............510 Phase current measurement CMMXU........515 Phase-phase and phase-neutral voltage measurements VMMXU, VNMMXU..............516 Voltage and current sequence measurements VMSQI, CMSQI 516 Technical data................. 516 Gas medium supervision SSIMG (63)..........518 Functionality..................518 Function block................. 519 Signals.....................519 Settings....................520 Operation principle................
  • Page 23 Table of contents Function block................. 539 Signals.....................540 Settings....................541 Operation principle................543 Disturbance report DRPRDRE............. 544 Identification..................544 Functionality..................545 Function block................. 545 Signals.....................547 Settings....................549 Monitored data.................558 Operation principle................562 Technical data................. 570 Logical signal status report BINSTATREP........... 570 Identification..................570 Functionality..................
  • Page 24 Table of contents Functionality..................579 Function block................. 580 Signals.....................580 Settings....................581 Operation principle................581 Operation accuracy..............582 Memory storage................583 Technical data................. 583 Section 17 Metering................585 Pulse-counter logic PCFCNT..............585 Identification..................585 Functionality..................585 Function block................. 585 Signals.....................586 Settings....................586 Monitored data.................587 Operation principle................587 Technical data.................
  • Page 25 Table of contents Function block................602 Signals..................603 Settings..................603 Monitored data................603 Generic communication function for Measured Value MVGAPC..604 Function block................605 Settings..................605 Monitored data................606 Operation principle..............606 IEC 61850-8-1 redundant station bus communication....606 Functionality................606 Function block................606 Signals..................607 Settings..................607 Monitored data................607 Principle of operation..............608...
  • Page 26 Table of contents Identification................643 Function block................644 Signals..................644 Settings..................644 Function status auto-recloser for IEC 60870-5-103 I103AR....645 Functionality................645 Identification................645 Function block................645 Signals..................646 Settings..................646 Function status ground-fault for IEC 60870-5-103 I103EF....646 Functionality................646 Identification................646 Function block................646 Signals..................647 Settings..................647 Function status fault protection for IEC 60870-5-103...
  • Page 27 Table of contents Settings..................653 Function commands for IEC 60870-5-103 I103CMD...... 655 Functionality................655 Identification................655 Function block................655 Signals..................655 Settings..................655 IED commands for IEC 60870-5-103 I103IEDCMD......656 Functionality................656 Identification................656 Function block................656 Signals..................656 Settings..................657 Function commands user defined for IEC 60870-5-103 I103USRCMD..................657 Functionality................
  • Page 28 Table of contents GOOSE function block to receive a double point value GOOSEDPRCV..................675 Identification..................675 Functionality..................675 Function block................. 675 Signals.....................676 Settings....................676 Operation principle ................. 676 GOOSE function block to receive an integer value GOOSEINTRCV...677 Identification..................677 Functionality..................677 Function block.................
  • Page 29 Table of contents Settings..................686 Activity logging parameters ACTIVLOG..........686 Activity logging ACTIVLOG............. 686 Settings....................687 Section 19 Remote communication.............689 Binary signal transfer................689 Identification..................689 Functionality..................689 Function block................. 690 Signals.....................691 Settings....................692 Monitored data.................695 Operation principle................696 Transmission of analog data from LDCM LDCMTransmit....697 Function block.................
  • Page 30 Table of contents Function block................. 708 Signals.....................709 Settings....................709 Operation principle................709 Internal signals................711 Supervision of analog inputs............713 Technical data................. 713 Time synchronization................714 Functionality..................714 Settings....................714 Operation principle ................. 719 General concepts............... 719 Real-time clock (RTC) operation..........720 Synchronization alternatives............722 Process bus IEC 61850-9-2LE synchronization......
  • Page 31 Table of contents Signal matrix for binary inputs SMBI.............733 Functionality..................733 Function block................. 733 Signals.....................733 Operation principle................734 Signal matrix for binary outputs SMBO ..........734 Functionality..................734 Function block................. 735 Signals.....................735 Operation principle................735 Signal matrix for mA inputs SMMI............735 Functionality..................
  • Page 32 Table of contents Settings....................748 Monitored data.................748 Operation principle................749 Section 21 IED hardware..............751 Overview....................751 Variants of case size with local HMI display........751 Case from the rear side..............753 Hardware modules................758 Overview..................758 Numeric processing module (NUM)..........759 Introduction.................759 Functionality................759 Block diagram................760 Power supply module (PSM)............
  • Page 33 Table of contents Technical data................779 Static binary output module (SOM)..........780 Introduction.................780 Design..................780 Signals..................781 Settings..................782 Monitored data................782 Technical data................784 Binary input/output module (IOM)............785 Introduction.................785 Design..................786 Signals..................787 Settings..................788 Monitored data................788 Technical data................790 mA input module (MIM)..............791 Introduction.................791 Design..................
  • Page 34 Table of contents IRIG-B time synchronization module IRIG-B........801 Introduction.................801 Design..................801 Settings..................802 Technical data................802 Dimensions................... 804 Case without rear cover..............804 Case with rear cover................806 Flush mounting dimensions.............808 Side-by-side flush mounting dimensions......... 809 Wall mounting dimensions...............811 Mounting alternatives................811 Flush mounting................811 Overview..................811 Mounting procedure for flush mounting........
  • Page 35 Table of contents Section 24 Inverse time characteristics..........831 Application.................... 831 Principle of operation................834 Mode of operation................834 Inverse characteristics................840 Section 25 Glossary................871 Glossary....................871 Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 37: Section 1 Introduction

    Section 1 1MRK 511 365-UUS A Introduction Section 1 Introduction This manual The technical manual contains operation principle descriptions, and lists function blocks, logic diagrams, input and output signals, setting parameters and technical data, sorted per function. The manual can be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.
  • Page 38: Product Documentation

    Section 1 1MRK 511 365-UUS A Introduction Product documentation 1.3.1 Product documentation set Engineering manual Installation manual Commissioning manual Operation manual Application manual Technical manual Communication protocol manual Cyber security deployment guideline IEC07000220-4-en.vsd IEC07000220 V4 EN Figure 1: The intended use of manuals throughout the product lifecycle The engineering manual contains instructions on how to engineer the IEDs using the various tools available within the PCM600 software.
  • Page 39: Document Revision History

    Section 1 1MRK 511 365-UUS A Introduction The commissioning manual contains instructions on how to commission the IED. The manual can also be used by system engineers and maintenance personnel for assistance during the testing phase. The manual provides procedures for the checking of external circuitry and energizing the IED, parameter setting and configuration as well as verifying settings by secondary injection.
  • Page 40: Related Documents

    Section 1 1MRK 511 365-UUS A Introduction 1.3.3 Related documents Documents related to RES670 Document numbers Application manual 1MRK 511 364-UUS Commissioning manual 1MRK 511 366-UUS Product guide 1MRK 511 367-BEN Technical manual 1MRK 511 365-UUS Type test certificate 1MRK 511 367-TUS 670 series manuals Document numbers Operation manual...
  • Page 41: Document Conventions

    Section 1 1MRK 511 365-UUS A Introduction Class 1 Laser product. Take adequate measures to protect the eyes and do not view directly with optical instruments. The caution icon indicates important information or warning related to the concept discussed in the text. It might indicate the presence of a hazard which could result in corruption of software or damage to equipment or property.
  • Page 42: Iec61850 Edition 1 / Edition 2 Mapping

    Section 1 1MRK 511 365-UUS A Introduction • the character ^ in front of an input/output signal name indicates that the signal name may be customized using the PCM600 software. • the character * after an input signal name indicates that the signal must be connected to another function block in the application configuration to achieve a valid application configuration.
  • Page 43 Section 1 1MRK 511 365-UUS A Introduction Function block name Edition 1 logical nodes Edition 2 logical nodes BUSPTRC_B4 BUSPTRC BUSPTRC BUSPTRC_B5 BUSPTRC BUSPTRC BUSPTRC_B6 BUSPTRC BUSPTRC BUSPTRC_B7 BUSPTRC BUSPTRC BUSPTRC_B8 BUSPTRC BUSPTRC BUSPTRC_B9 BUSPTRC BUSPTRC BUSPTRC_B10 BUSPTRC BUSPTRC BUSPTRC_B11 BUSPTRC BUSPTRC BUSPTRC_B12...
  • Page 44 Section 1 1MRK 511 365-UUS A Introduction Function block name Edition 1 logical nodes Edition 2 logical nodes BZNSPDIF_B BZNSPDIF BZBSGAPC BZBSPDIF BZNSGAPC BZNSPDIF BZNTPDIF_A BZNTPDIF BZATGAPC BZATPDIF BZNTGAPC BZNTPDIF BZNTPDIF_B BZNTPDIF BZBTGAPC BZBTPDIF BZNTGAPC BZNTPDIF CBPGAPC CBPLLN0 CBPMMXU CBPMMXU CBPPTRC CBPPTRC HOLPTOV...
  • Page 45 Section 1 1MRK 511 365-UUS A Introduction Function block name Edition 1 logical nodes Edition 2 logical nodes EF2PTOC EF2LLN0 EF2PTRC EF2PTRC EF2RDIR EF2RDIR GEN2PHAR GEN2PHAR PH1PTOC PH1PTOC EF4PTOC EF4LLN0 EF4PTRC EF4PTRC EF4RDIR EF4RDIR GEN4PHAR GEN4PHAR PH1PTOC PH1PTOC EFPIOC EFPIOC EFPIOC EFRWPIOC EFRWPIOC...
  • Page 46 Section 1 1MRK 511 365-UUS A Introduction Function block name Edition 1 logical nodes Edition 2 logical nodes L4UFCNT L4UFCNT L4UFCNT L6CPDIF L6CPDIF L6CGAPC L6CPDIF L6CPHAR L6CPTRC LAPPGAPC LAPPLLN0 LAPPPDUP LAPPPDUP LAPPPUPF LAPPPUPF LCCRPTRC LCCRPTRC LCCRPTRC LCNSPTOC LCNSPTOC LCNSPTOC LCNSPTOV LCNSPTOV LCNSPTOV LCP3PTOC...
  • Page 47 Section 1 1MRK 511 365-UUS A Introduction Function block name Edition 1 logical nodes Edition 2 logical nodes O2RWPTOV GEN2LLN0 O2RWPTOV O2RWPTOV PH1PTRC PH1PTRC OC4PTOC OC4LLN0 GEN4PHAR GEN4PHAR PH3PTOC PH3PTOC PH3PTRC PH3PTRC OEXPVPH OEXPVPH OEXPVPH OOSPPAM OOSPPAM OOSPPAM OOSPTRC OV2PTOV GEN2LLN0 OV2PTOV OV2PTOV...
  • Page 48 Section 1 1MRK 511 365-UUS A Introduction Function block name Edition 1 logical nodes Edition 2 logical nodes SESRSYN RSY1LLN0 AUT1RSYN AUT1RSYN MAN1RSYN MAN1RSYN SYNRSYN SYNRSYN SINGLELCCH SCHLCCH SLGAPC SLGGIO SLGAPC SMBRREC SMBRREC SMBRREC SMPPTRC SMPPTRC SMPPTRC SP16GAPC SP16GGIO SP16GAPC SPC8GAPC SPC8GGIO SPC8GAPC...
  • Page 49 Section 1 1MRK 511 365-UUS A Introduction Function block name Edition 1 logical nodes Edition 2 logical nodes UV2PTUV GEN2LLN0 PH1PTRC PH1PTRC UV2PTUV UV2PTUV VDCPTOV VDCPTOV VDCPTOV VDSPVC VDRFUF VDSPVC VMMXU VMMXU VMMXU VMSQI VMSQI VMSQI VNMMXU VNMMXU VNMMXU VRPVOC VRLLN0 PH1PTRC PH1PTRC...
  • Page 50 Section 1 1MRK 511 365-UUS A Introduction Function block name Edition 1 logical nodes Edition 2 logical nodes ZMRPDIS ZMRPDIS ZMRPDIS ZMRPSB ZMRPSB ZMRPSB ZSMGAPC ZSMGAPC ZSMGAPC Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 51: Section 2 Available Functions

    Section 2 1MRK 511 365-UUS A Available functions Section 2 Available functions Wide area measurement functions IEC 61850 ANSI Function description Phasor Measurement Unit RES670 (Customized) PMUCONF Configuration parameters for IEEE1344 and C37.118 protocol PMUREPORT Protocol reporting via IEEE1344 and C37.118 1–2 PHASORREPORT1 Protocol reporting of phasor data via IEEE 1344 and C37.118, phasors 1-8...
  • Page 52: Control And Monitoring Functions

    Section 2 1MRK 511 365-UUS A Available functions IEC 61850 ANSI Function description RES670 (Customized) SDEPSDE Sensitive directional residual overcurrent and power protection LCPTTR Thermal overload protection, one time constant, Celsius 0–6 LFPTTR Thermal overload protection, one time constant, 0–6 Fahrenheit GUPPDUP Directional underpower protection...
  • Page 53 Section 2 1MRK 511 365-UUS A Available functions IEC 61850 ANSI Function description Phasor measurement unit RES670 SPC8GAPC Single point generic control 8 signals AUTOBITS AutomationBits, command function for DNP3.0 SINGLECMD Single command, 16 signals I103CMD Function commands for IEC 60870-5-103 I103GENCMD Function commands generic for IEC 60870-5-103 I103POSCMD...
  • Page 54 Section 2 1MRK 511 365-UUS A Available functions IEC 61850 ANSI Function description Phasor measurement unit RES670 AND, GATE, INV, Extension logic package (see Table 4) 0–1 LLD, OR, PULSETIMER, SLGAPC, SRMEMORY, TIMERSET, VSGAPC, XOR FXDSIGN Fixed signal function block B16I Boolean 16 to Integer conversion BTIGAPC...
  • Page 55 Section 2 1MRK 511 365-UUS A Available functions IEC 61850 ANSI Function description Phasor measurement unit RES670 I103MEAS Measurands for IEC 60870-5-103 I103MEASUSR Measurands user defined signals for IEC 60870-5-103 I103AR Function status auto-recloser for IEC 60870-5-103 I103EF Function status earth-fault for IEC 60870-5-103 I103FLTPROT Function status fault protection for IEC 60870-5-103...
  • Page 56 Section 2 1MRK 511 365-UUS A Available functions Table 3: Total number of instances for configurable logic blocks Q/T Configurable logic blocks Q/T Total number of instances ANDQT INDCOMBSPQT INDEXTSPQT INVALIDQT INVERTERQT ORQT PULSETIMERQT RSMEMORYQT SRMEMORYQT TIMERSETQT XORQT Table 4: Total number of instances for extended logic package Extended configurable logic block Total number of instances...
  • Page 57: Communication

    Section 2 1MRK 511 365-UUS A Available functions Communication IEC 61850 ANSI Function description Phasor measurement unit RES670 (Customized) Station communication LONSPA, SPA SPA communication protocol LON communication protocol HORZCOMM Network variables via LON PROTOCOL Operation selection between SPA and IEC 60870-5-103 for RS485PROT Operation selection for RS485 RS485GEN...
  • Page 58: Basic Ied Functions

    Section 2 1MRK 511 365-UUS A Available functions IEC 61850 ANSI Function description Phasor measurement unit RES670 (Customized) AGSAL Generic security application component LD0LLN0 IEC 61850 LD0 LLN0 SYSLLN0 IEC 61850 SYS LLN0 LPHD Physical device information PCMACCS IED Configuration Protocol SECALARM Component for mapping security events on protocols such as DNP3 and IEC103...
  • Page 59 Section 2 1MRK 511 365-UUS A Available functions IEC 61850 or function Description name IRIG-B Time synchronization SETGRPS Number of setting groups ACTVGRP Parameter setting groups TESTMODE Test mode functionality CHNGLCK Change lock function SMBI Signal matrix for binary inputs SMBO Signal matrix for binary outputs SMMI...
  • Page 60 Section 2 1MRK 511 365-UUS A Available functions Table 6: Local HMI functions IEC 61850 or function ANSI Description name LHMICTRL Local HMI signals LANGUAGE Local human machine language SCREEN Local HMI Local human machine screen behavior FNKEYTY1–FNKEYTY5 Parameter setting function for HMI in PCM600 FNKEYMD1–...
  • Page 61: Section 3 Analog Inputs

    Section 3 1MRK 511 365-UUS A Analog inputs Section 3 Analog inputs Introduction Analog input channels must be configured and set properly in order to get correct measurement results and correct protection operations. For power measuring and all directional and differential functions the directions of the input currents must be defined in order to reflect the way the current transformers are installed/connected in the field ( primary and secondary connections ).
  • Page 62: Signals

    Section 3 1MRK 511 365-UUS A Analog inputs Signals Table 7: TRM_12I Output signals Name Type Description STATUS BOOLEAN Analog input module status CH1(I) STRING Analogue current input 1 CH2(I) STRING Analog current input 2 CH3(I) STRING Analog current input 3 CH4(I) STRING Analog current input 4...
  • Page 63 Section 3 1MRK 511 365-UUS A Analog inputs Table 9: TRM_6I Output signals Name Type Description STATUS BOOLEAN Analog input module status CH1(I) STRING Analogue current input 1 CH2(I) STRING Analog current input 2 CH3(I) STRING Analog current input 3 CH4(I) STRING Analog current input 4...
  • Page 64: Settings

    Section 3 1MRK 511 365-UUS A Analog inputs Name Type Description CH8(I) STRING Analog current input 8 CH9(I) STRING Analog current input 9 CH10(V) STRING Analog voltage input 10 CH 11(V) STRING Analog voltage input 11 CH12(V) STRING Analog voltage input 12 Table 12: TRM_10I_2U Output signals Name...
  • Page 65 Section 3 1MRK 511 365-UUS A Analog inputs Table 13: AISVBAS Non group settings (basic) Name Values (Range) Unit Step Default Description PhaseAngleRef TRM40-Ch1 - Ch12 TRM40-Ch1 Reference channel TRM41-Ch1 - Ch12 for phase angle MU1-IA presentation MU1-IB MU1-IC MU1-I0 MU1- VA MU1- VB MU1-VC...
  • Page 66 Section 3 1MRK 511 365-UUS A Analog inputs Name Values (Range) Unit Step Default Description CT_WyePoint4 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec4 1 - 10 Rated CT secondary current CTprim4 1 - 99999 3000 Rated CT primary current CT_WyePoint5 FromObject ToObject...
  • Page 67 Section 3 1MRK 511 365-UUS A Analog inputs Table 15: TRM_6I_6U Non group settings (basic) Name Values (Range) Unit Step Default Description CT_WyePoint1 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec1 1 - 10 Rated CT secondary current CTprim1 1 - 99999 3000...
  • Page 68 Section 3 1MRK 511 365-UUS A Analog inputs Table 16: TRM_6I Non group settings (basic) Name Values (Range) Unit Step Default Description CT_WyePoint1 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec1 1 - 10 Rated CT secondary current CTprim1 1 - 99999 3000...
  • Page 69 Section 3 1MRK 511 365-UUS A Analog inputs Name Values (Range) Unit Step Default Description CTprim3 1 - 99999 3000 Rated CT primary current CT_WyePoint4 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec4 1 - 10 Rated CT secondary current CTprim4 1 - 99999 3000...
  • Page 70 Section 3 1MRK 511 365-UUS A Analog inputs Name Values (Range) Unit Step Default Description CT_WyePoint3 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec3 1 - 10 Rated CT secondary current CTprim3 1 - 99999 3000 Rated CT primary current CT_WyePoint4 FromObject ToObject...
  • Page 71 Section 3 1MRK 511 365-UUS A Analog inputs Table 19: TRM_10I_2U Non group settings (basic) Name Values (Range) Unit Step Default Description CT_WyePoint1 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec1 1 - 10 Rated CT secondary current CTprim1 1 - 99999 3000...
  • Page 72: Monitored Data

    Section 3 1MRK 511 365-UUS A Analog inputs Name Values (Range) Unit Step Default Description CTprim10 1 - 99999 3000 Rated CT primary current VTsec11 0.001 - 999.999 0.001 110.000 Rated VT secondary voltage VTprim11 0.05 - 2000.00 0.05 400.00 Rated VT primary voltage VTsec12 0.001 - 999.999...
  • Page 73: Operation Principle

    Section 3 1MRK 511 365-UUS A Analog inputs Table 25: TRM_9I_3U Monitored data Name Type Values (Range) Unit Description STATUS BOOLEAN 0=Ok Analog input module status 1=Error Table 26: TRM_10I_2U Monitored data Name Type Values (Range) Unit Description STATUS BOOLEAN 0=Ok Analog input module status 1=Error...
  • Page 74: Technical Data

    Section 3 1MRK 511 365-UUS A Analog inputs Definition of direction Definition of direction for directional functions for directional functions Reverse Forward Forward Reverse Protected Object Line, transformer, etc e.g. P, Q, I e.g. P, Q, I Measured quantity is Measured quantity is positive when flowing positive when flowing...
  • Page 75 Section 3 1MRK 511 365-UUS A Analog inputs Quantity Rated value Nominal range Permissive overload 420 V cont. 450 V 10 s Burden < 20 mVA at 110 V Frequency = 60/50 Hz ±5% max. 350 A for 1 s when COMBITEST test switch is included. Table 28: TRM - Energizing quantities, rated values and limits for measuring transformer modules Quantity...
  • Page 77: Section 4 Binary Input And Output Modules

    Section 4 1MRK 511 365-UUS A Binary input and output modules Section 4 Binary input and output modules Binary input 4.1.1 Binary input debounce filter The debounce filter eliminates bounces and short disturbances on a binary input. A time counter is used for filtering. The time counter is increased once in a millisecond when a binary input is high, or decreased when a binary input is low.
  • Page 78: Setting Parameters For Binary Input Modules

    Section 4 1MRK 511 365-UUS A Binary input and output modules 4.1.3.1 Setting parameters for binary input modules Table 30: BIM Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Enabled Operation Disabled/Enabled Enabled DebounceTime 0.001 - 0.020 0.001 0.001 Debounce time for binary inputs...
  • Page 79: Section 5 Local Human-Machine-Interface Lhmi

    Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI Section 5 Local Human-Machine-Interface LHMI Local HMI screen behaviour 5.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Local HMI screen behaviour SCREEN 5.1.2 Settings Table 32: SCREEN Non group settings (basic) Name Values (Range)
  • Page 80: Function Block

    Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI 5.2.2 Function block LHMICTRL CLRLEDS HMI-ON RED-S YELLOW-S YELLOW-F CLRPULSE LEDSCLRD IEC09000320-1-en.vsd IEC09000320 V1 EN Figure 3: LHMICTRL function block 5.2.3 Signals Table 33: LHMICTRL Input signals Name Type Default Description RSTLEDS BOOLEAN Input to reset the LCD-HMI LEDs...
  • Page 81: Basic Part For Led Indication Module

    Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI Basic part for LED indication module 5.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Basic part for LED indication module LEDGEN Basic part for LED indication HW GRP1_LED1 - module GRP1_LED15...
  • Page 82: Settings

    Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI Table 36: LEDGEN Output signals Name Type Description NEWIND BOOLEAN New indication signal if any LED indication input is set BOOLEAN A pulse is provided when the LEDs are acknowledged Table 37: GRP1_LED1 Input signals Name Type...
  • Page 83: Lcd Part For Hmi Function Keys Control Module

    Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI LCD part for HMI function keys control module 5.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number LCD part for HMI Function Keys Control FNKEYMD1 - module FNKEYMD5 5.4.2...
  • Page 84 Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI Table 43: FNKEYTY1 Non group settings (basic) Name Values (Range) Unit Step Default Description Type Disabled Disabled Function key type Menu shortcut Control MenuShortcut Menu shortcut for function key MenuShortcut values are product dependent and created dynamically depending on the product main menu.
  • Page 85: Operation Principle

    Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI Operation principle 5.5.1 Local HMI ANSI13000239-2-en.vsd ANSI13000239 V2 EN Figure 7: Local human-machine interface The LHMI of the IED contains the following elements: Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 86: Keypad

    Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI • Keypad • Display (LCD) • LED indicators • Communication port for PCM600 The LHMI is used for setting, monitoring and controlling. 5.5.1.1 Keypad The LHMI keypad contains push-buttons which are used to navigate in different views or menus.
  • Page 87 Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI ANSI15000157-1-en.vsdx ANSI15000157 V1 EN Figure 8: LHMI keypad with object control, navigation and command push-buttons and RJ-45 communication port 1...5 Function button Close Open Escape Left Down Right Enter Remote/Local Uplink LED Not in use Multipage Phasor measurement unit RES670 2.1 ANSI...
  • Page 88: Display

    Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI Menu Clear Help Communication port Programmable indication LEDs IED status LEDs 5.5.1.2 Display The LHMI includes a graphical monochrome liquid crystal display (LCD) with a resolution of 320 x 240 pixels. The character size can vary. The display view is divided into four basic areas.
  • Page 89 Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI IEC15000270-1-en.vsdx IEC15000270 V1 EN Figure 9: Display layout 1 Path 2 Content 3 Status 4 Scroll bar (appears when needed) • The path shows the current location in the menu structure. If the path is too long to be shown, it is truncated from the beginning, and the truncation is indicated with three dots.
  • Page 90 Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI IEC15000138-1-en.vsdx IEC15000138 V1 EN Figure 10: Truncated path The number after : (colon sign) at the end of the function instance, for example, 1 in SMAI1:1, indicates the number of that function instance. The function key button panel shows on request what actions are possible with the function buttons.
  • Page 91 Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI IEC13000281-1-en.vsd GUID-C98D972D-D1D8-4734-B419-161DBC0DC97B V1 EN Figure 11: Function button panel The indication LED panel shows on request the alarm text labels for the indication LEDs. Three indication LED pages are available. IEC13000240-1-en.vsd GUID-5157100F-E8C0-4FAB-B979-FD4A971475E3 V1 EN Figure 12: Indication LED panel...
  • Page 92: Leds

    Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI 5.5.1.3 LEDs The LHMI includes three protection status LEDs above the display: Normal, Pickup and Trip. There are 15 programmable indication LEDs on the front of the LHMI. Each LED can indicate three states with the colors: green, yellow and red.
  • Page 93: Status Leds

    Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI Each indication LED on local HMI can be set individually to operate in 6 different sequences; two as follow type and four as latch type. Two of the latching sequence types are intended to be used as a protection indication system, either in collecting or restarting mode, with reset functionality.
  • Page 94 Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI sequence of events is that the signals have been engineered in the disturbance recorder. Re-starting mode • In the re-starting mode of operation each new pickup resets all previous active LEDs and activates only those which appear during one disturbance.
  • Page 95 Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI The figures below show the function of available sequences selectable for each LED separately. The following 6 sequences are available: • Sequence 1: Follow-S • Sequence 2: Follow-F • Sequence 3: LatchedAck-F-S •...
  • Page 96 Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI Activating signal IEC01000228_2_en.vsd IEC01000228 V2 EN Figure 14: Operating Sequence 1 (Follow-S) If inputs for two or more colors are active at the same time to the same LED, the priority color it shows is in accordance with the color described above.
  • Page 97 Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI Activating signal Acknow. en01000231.vsd IEC01000231 V1 EN Figure 16: Operating Sequence 3 LatchedAck-F-S The sequence described below is valid only if the same function block is used for all three colour LEDs. When an acknowledgment is performed, all indications that appear before the indication with higher priority has been reset, will be acknowledged, independent of if the low priority indication appeared before or after acknowledgment.
  • Page 98 Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI Activating signal GREEN Activating signal YELLOW Activating signal RED Acknow. IEC09000314-1-en.vsd IEC09000314 V1 EN Figure 18: Operating sequence 3, three colors involved, alternative 1 If an indication with higher priority appears after acknowledgment of a lower priority indication the high priority indication will be shown as not acknowledged according to Figure Activating...
  • Page 99 Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI 3 and 4 is that indications that are still activated will not be affected by the reset that is, immediately after the positive edge of the reset has been executed a new reading and storing of active signals is performed.
  • Page 100 Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI LEDs set for sequence 6 are completely independent in its operation of LEDs set for other sequences. Timing diagram for sequence 6 Figure 22 shows the timing diagram for two indications within one disturbance. Disturbance tRestart Activating...
  • Page 101 Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI Disturbance Disturbance tRestart tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000240_2_en.vsd IEC01000240 V2 EN Figure 23: Operating sequence 6 (LatchedReset-S), two different disturbances Figure 24 shows the timing diagram when a new indication appears after the first one has reset but before tRestart has elapsed.
  • Page 102 Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000241_2_en.vsd IEC01000241 V2 EN Figure 24: Operating sequence 6 (LatchedReset-S), two indications within same disturbance but with reset of activating signal between Figure 25 shows the timing diagram for manual reset.
  • Page 103: Operation Principle

    Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000242_2_en.vsd IEC01000242 V2 EN Figure 25: Operating sequence 6 (LatchedReset-S), manual reset 5.5.3 Function keys 5.5.3.1 Functionality Local Human-Machine-Interface (LHMI) has five function buttons, directly to the left of...
  • Page 104 Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI FNKEYMD1 - FNKEYMD5 function block also has a number of settings and parameters that control the behavior of the function block. These settings and parameters are normally set using the PST. Operating sequence The operation mode is set individually for each output, either OFF, TOGGLE or PULSED.
  • Page 105 Section 5 1MRK 511 365-UUS A Local Human-Machine-Interface LHMI Note that the third positive edge on the input attribute does not cause a pulse, since the edge was applied during pulse output. A new pulse can only begin when the output is zero; else the trigger edge is lost.
  • Page 107: Identification

    Section 6 1MRK 511 365-UUS A Wide area measurement system Section 6 Wide area measurement system C37.118 Phasor Measurement Data Streaming Protocol Configuration PMUCONF 6.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Configuration parameters for IEEE 1344 PMUCONF and C37.118 protocol 6.1.2...
  • Page 108: Ieee C37.118 Message Framework

    Section 6 1MRK 511 365-UUS A Wide area measurement system that PMUREPORT instance. Whereas, for UDP clients, the PMUREPORT instance for each UDP channel is defined by the user in the PMU and the client has to know the PMU ID corresponding to that instance in order to be able to communicate.
  • Page 109: Short Guidance For Use Of Tcp

    Section 6 1MRK 511 365-UUS A Wide area measurement system • Data messages are the measurements made by a PMU. • Configuration is a machine-readable message describing the data types, calibration factors, and other metadata for the data that the PMU/PDC sends. •...
  • Page 110: Short Guidance For Use Of Udp

    Section 6 1MRK 511 365-UUS A Wide area measurement system and/or header will be sent back to the client (as Configuration frame/Header frame) over the same TCP channel. Once the TCP client connects to RES670, the client has to necessarily send a command frame to start a communication.
  • Page 111 Section 6 1MRK 511 365-UUS A Wide area measurement system SendDataUDP[x] – Enable / disable UDP data stream ProtocolOnUDP[x] – Send IEEE1344 or C37.118 on UDP PMUReportUDP[x] – Instance number of PMUREPORT function block that must send data on this UDP stream (UDP client group[x]) UDPDestAddres[x] –...
  • Page 112 Section 6 1MRK 511 365-UUS A Wide area measurement system PMUReportUDP[x] which is used to define the instance number of PMUREPORT function block that must send data on this UDP stream (UDP client group[x]). The data streams in RES670 can be sent as unicast or as multicast. The user-defined IP address set in the parameter UDPDestAddress[x] for each UDP stream defines if it is a Unicast or Multicast.
  • Page 113: Settings

    Section 6 1MRK 511 365-UUS A Wide area measurement system 6.1.4 Settings Table 44: PMUCONF Non group settings (basic) Name Values (Range) Unit Step Default Description 1344TCPport 1024 - 65534 4711 TCP port for control of IEEE 1344 data for TCP clients C37.118TCPport 1024 - 65534...
  • Page 114 Section 6 1MRK 511 365-UUS A Wide area measurement system Name Values (Range) Unit Step Default Description MCastCtrlPortSel2 None Any/Follow Select network port for multicast UDP data and Front Gateway Ctrl client LANAB LANCD Any/Follow Gateway SendCfgOnUDP2 Disabled Disabled Send Config frame2 on UDP for group2 TCPportUDPdataCtrl3 1024 - 65534 4715...
  • Page 115 Section 6 1MRK 511 365-UUS A Wide area measurement system Name Values (Range) Unit Step Default Description TCPportUDPdataCtrl5 1024 - 65534 4717 TCP port for control of data sent over UDP client group5 SendDataUDP5 Disabled Disabled Send data to UDP client group5 Enabled SetByProtocol ProtocolOnUDP5...
  • Page 116: Identification

    Section 6 1MRK 511 365-UUS A Wide area measurement system Protocol reporting via IEEE 1344 and C37.118 PMUREPORT 6.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Protocol reporting via IEEE 1344 and PMUREPORT C37.118 6.2.2 Functionality The phasor measurement reporting block moves the phasor calculations into an IEEE...
  • Page 117 Section 6 1MRK 511 365-UUS A Wide area measurement system Parameter Settings of multiple PMUREPORT blocks. These rules are explained in RES670 Application Manual in section PMU Report Function Blocks Connection Rules. Figure shows both instances of the PMUREPORT function block. As seen, each PMUREPORT instance has 4 predefined binary input signals corresponding to the Bits 03-00: Trigger Reason defined in STAT field of the Data frame in IEEE C37.118.2 standard.
  • Page 118 Section 6 1MRK 511 365-UUS A Wide area measurement system Figure shows both instances of ANALOGREPORT function blocks. The instance number is visible in the bottom of each function block. For each instance, there are three separate ANALOGREPORT blocks capable of reporting up to 24 Analog signals (8 Analog signals in each ANALOGREPORT block).
  • Page 119: Function Block

    Section 6 1MRK 511 365-UUS A Wide area measurement system IEC140000121 V1 EN Figure 33: Multiple instances of BINARYREPORT blocks 6.2.3 Function block PMUREPORT BLOCK TIMESTAT ^FREQTRIG ^DFDTTRIG ^MAGHIGHTRIG ^MAGLOWTRIG ANSI14000301.vsd ANSI14000301 V1 EN ANALOGREPORT1 ^ANALOG1 ^ANALOG2 ^ANALOG3 ^ANALOG4 ^ANALOG5 ^ANALOG6 ^ANALOG7 ^ANALOG8...
  • Page 120 Section 6 1MRK 511 365-UUS A Wide area measurement system ANALOGREPORT3 ^ANALOG17 ^ANALOG18 ^ANALOG19 ^ANALOG20 ^ANALOG21 ^ANALOG22 ^ANALOG23 ^ANALOG24 ANSI14000304.vsd ANSI14000304 V1 EN BINARYREPORT1 ^BINARY1 ^BINARY2 ^BINARY3 ^BINARY4 ^BINARY5 ^BINARY6 ^BINARY7 ^BINARY8 ANSI14000305.vsd ANSI14000305 V1 EN BINARYREPORT2 ^BINARY9 ^BINARY10 ^BINARY11 ^BINARY12 ^BINARY13 ^BINARY14...
  • Page 121: Signals

    Section 6 1MRK 511 365-UUS A Wide area measurement system PHASORREPORT2 ^PHASOR9 ^PHASOR10 ^PHASOR11 ^PHASOR12 ^PHASOR13 ^PHASOR14 ^PHASOR15 ^PHASOR16 ANSI14000309.vsd ANSI14000309 V1 EN PHASORREPORT3 ^PHASOR17 ^PHASOR18 ^PHASOR19 ^PHASOR20 ^PHASOR21 ^PHASOR22 ^PHASOR23 ^PHASOR24 ANSI14000310.vsd ANSI14000310 V1 EN PHASORREPORT4 ^PHASOR25 ^PHASOR26 ^PHASOR27 ^PHASOR28 ^PHASOR29 ^PHASOR30...
  • Page 122 Section 6 1MRK 511 365-UUS A Wide area measurement system Table 47: ANALOGREPORT1 Input signals Name Type Default Description ANALOG1 REAL Analog input channel 1 ANALOG2 REAL Analog input channel 2 ANALOG3 REAL Analog input channel 3 ANALOG4 REAL Analog input channel 4 ANALOG5 REAL Analog input channel 5...
  • Page 123 Section 6 1MRK 511 365-UUS A Wide area measurement system Table 50: BINARYREPORT1 Input signals Name Type Default Description BINARY1 BOOLEAN Binary input channel 1 BINARY2 BOOLEAN Binary input channel 2 BINARY3 BOOLEAN Binary input channel 3 BINARY4 BOOLEAN Binary input for channel 4 BINARY5 BOOLEAN Binary input channel 5...
  • Page 124 Section 6 1MRK 511 365-UUS A Wide area measurement system Table 53: PHASORREPORT1 Input signals Name Type Default Description PHASOR1 GROUP Group signal Input for Phasor1 SIGNAL PHASOR2 GROUP Group signal Input for Phasor2 SIGNAL PHASOR3 GROUP Group signal Input for Phasor3 SIGNAL PHASOR4 GROUP...
  • Page 125 Section 6 1MRK 511 365-UUS A Wide area measurement system Table 55: PHASORREPORT3 Input signals Name Type Default Description PHASOR17 GROUP Group signal Input for Phasor17 SIGNAL PHASOR18 GROUP Group signal Input for Phasor18 SIGNAL PHASOR19 GROUP Group signal Input for Phasor19 SIGNAL PHASOR20 GROUP...
  • Page 126: Settings

    Section 6 1MRK 511 365-UUS A Wide area measurement system 6.2.5 Settings Table 57: PMUREPORT Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Enabled Operation mode off/on Enabled SvcClass P class P class Service class M class Global_PMU_ID 0 - 16...
  • Page 127 Section 6 1MRK 511 365-UUS A Wide area measurement system Name Values (Range) Unit Step Default Description Analog2UnitType Single point-on- RMS of analog Unit type for analog 2 wave input RMS of analog input Peak of analog input Analog3Range 3277.0 - 3277.0 (+/-) Range for scaling analog 3 in integer 10000000000.0...
  • Page 128 Section 6 1MRK 511 365-UUS A Wide area measurement system Name Values (Range) Unit Step Default Description Analog7UnitType Single point-on- RMS of analog Unit type for analog 7 wave input RMS of analog input Peak of analog input Analog8Range 3277.0 - 3277.0 (+/-) Range for scaling analog 8 in integer 10000000000.0...
  • Page 129 Section 6 1MRK 511 365-UUS A Wide area measurement system Name Values (Range) Unit Step Default Description Analog13Range 3277.0 - 3277.0 (+/-) Range for scaling analog 13 in integer 10000000000.0 format Analog13UnitType Single point-on- RMS of analog Unit type for analog 13 wave input RMS of analog...
  • Page 130 Section 6 1MRK 511 365-UUS A Wide area measurement system Name Values (Range) Unit Step Default Description Analog18UnitType Single point-on- RMS of analog Unit type for analog 18 wave input RMS of analog input Peak of analog input Analog19Range 3277.0 - 3277.0 (+/-) Range for scaling analog 19 in integer 10000000000.0...
  • Page 131 Section 6 1MRK 511 365-UUS A Wide area measurement system Name Values (Range) Unit Step Default Description Analog23UnitType Single point-on- RMS of analog Unit type for analog 23 wave input RMS of analog input Peak of analog input Analog24Range 3277.0 - 3277.0 (+/-) Range for scaling analog 24 in integer 10000000000.0...
  • Page 132 Section 6 1MRK 511 365-UUS A Wide area measurement system Name Values (Range) Unit Step Default Description Phasor7 POSSEQ POSSEQ Group selector for Phasor7 NEGSEQ ZEROSEQ Phasor8 POSSEQ Group selector for phasor8 POSSEQ NEGSEQ ZEROSEQ Phasor1report Disabled Enabled Reporting phasor 1 Enabled Phasor1UseFreqSrc Disabled...
  • Page 133 Section 6 1MRK 511 365-UUS A Wide area measurement system Name Values (Range) Unit Step Default Description Phasor8report Disabled Enabled Reporting phasor 8 Enabled Phasor8UseFreqSrc Disabled Enabled Include phasor 8 for automatic frequency Enabled source selection Phasor1 POSSEQ POSSEQ Group Selector for Phasor1 NEGSEQ ZEROSEQ Table 62:...
  • Page 134 Section 6 1MRK 511 365-UUS A Wide area measurement system Name Values (Range) Unit Step Default Description Phasor15 POSSEQ POSSEQ Group selector for Phasor15 NEGSEQ ZEROSEQ Phasor16 POSSEQ POSSEQ Group selector for Phasor16 NEGSEQ ZEROSEQ Phasor9Report Disabled Enabled Reporting phasor 9 Enabled Phasor9UseFreqSrc Disabled...
  • Page 135 Section 6 1MRK 511 365-UUS A Wide area measurement system Table 63: PHASORREPORT3 Non group settings (basic) Name Values (Range) Unit Step Default Description Phasor17 POSSEQ POSSEQ Group selector for Phasor17 NEGSEQ ZEROSEQ Phasor18 POSSEQ POSSEQ Group selector for Phasor18 NEGSEQ ZEROSEQ Phasor19...
  • Page 136 Section 6 1MRK 511 365-UUS A Wide area measurement system Name Values (Range) Unit Step Default Description Phasor17UseFreqSrc Disabled Enabled Include phasor 17 for automatic frequency Enabled source selection Phasor18Report Disabled Enabled Reporting phasor 18 Enabled Phasor18UseFreqSrc Disabled Enabled Include phasor 18 for automatic frequency Enabled source selection Phasor19Report...
  • Page 137 Section 6 1MRK 511 365-UUS A Wide area measurement system Table 64: PHASORREPORT4 Non group settings (basic) Name Values (Range) Unit Step Default Description Phasor25 POSSEQ POSSEQ Group selector for Phasor25 NEGSEQ ZEROSEQ Phasor26 POSSEQ POSSEQ Group selector for Phasor26 NEGSEQ ZEROSEQ Phasor27...
  • Page 138: Monitored Data

    Section 6 1MRK 511 365-UUS A Wide area measurement system Name Values (Range) Unit Step Default Description Phasor25UseFreqSrc Disabled Enabled Include phasor 25 for automatic frequency Enabled source selection Phasor26Report Disabled Enabled Reporting phasor 26 Enabled Phasor26UseFreqSrc Disabled Enabled Include phasor 26 for automatic frequency Enabled source selection Phasor27Report...
  • Page 139 Section 6 1MRK 511 365-UUS A Wide area measurement system Name Type Values (Range) Unit Description FREQREFCHERR BOOLEAN 0=Freq ref not Frequency reference channel available error 1=Freq ref error 2=Freq ref available FREQTRIG BOOLEAN Frequency trigger DFDTTRIG BOOLEAN Rate of change of frequency trigger MAGHIGHTRIG BOOLEAN...
  • Page 140 Section 6 1MRK 511 365-UUS A Wide area measurement system Table 68: ANALOGREPORT3 Monitored data Name Type Values (Range) Unit Description ANALOG17 REAL Analog input channel 17 ANALOG18 REAL Analog input channel 18 ANALOG19 REAL Analog input channel 19 ANALOG20 REAL Analog input channel 20 ANALOG21...
  • Page 141 Section 6 1MRK 511 365-UUS A Wide area measurement system Table 71: BINARYREPORT3 Monitored data Name Type Values (Range) Unit Description BINARY17 BOOLEAN Binary input channel 17 BINARY18 BOOLEAN Binary input channel 18 BINARY19 BOOLEAN Binary input channel 19 BINARY20 BOOLEAN Binary input channel 20 BINARY21...
  • Page 142 Section 6 1MRK 511 365-UUS A Wide area measurement system Name Type Values (Range) Unit Description PHASOR11 REAL Phasor 11 amplitude PHASOR11 REAL Phasor 11 angle PHASOR12 REAL Phasor 12 amplitude PHASOR12 REAL Phasor 12 angle PHASOR13 REAL Phasor 13 amplitude PHASOR13 REAL Phasor 13 angle...
  • Page 143: Operation Principle

    Section 6 1MRK 511 365-UUS A Wide area measurement system Table 75: PHASORREPORT4 Monitored data Name Type Values (Range) Unit Description PHASOR25 REAL Phasor 25 amplitude PHASOR25 REAL Phasor 25 angle PHASOR26 REAL Phasor 26 amplitude PHASOR26 REAL Phasor 26 angle PHASOR27 REAL Phasor 27 amplitude...
  • Page 144 Section 6 1MRK 511 365-UUS A Wide area measurement system where, (n) and X (n) are the measured values and X are the theoretical values In order to comply with TVE requirements, special calibration is done in the factory on the analog input channels of the PMU, resulting in increased accuracy of the measurements.
  • Page 145: Frequency Reporting

    Section 6 1MRK 511 365-UUS A Wide area measurement system The TRM modules are individually AC-calibrated in the factory. The calibration data is stored in the prepared area of the TRM EEProm. The pre-processor block is extended with calibration compensation and a new angle reference method based on timestamps. The AI3P output of the preprocessor block is used to provide the required information for each respective PMUREPORT phasor channel.
  • Page 146: Reporting Filters

    Section 6 1MRK 511 365-UUS A Wide area measurement system There is also an output available on the component which shows if the reference frequency is good, error or reference channel unavailable. It is possible to monitor the status of the frequency reference channel (frequency source) for the respective PMUREPORT instance on Local HMI under Test/Function status/ Communication/Station Communication/PMU Report/PMUREPORT:1/Outputs, where the FREQREFCHSEL output shows the selected channel as the reference for...
  • Page 147: Scaling Factors For Analogreport Channels

    Section 6 1MRK 511 365-UUS A Wide area measurement system The synchrophasor measurement is adaptive as it follows the fundamental frequency over a wide range despite the reporting rate. For example, when the synchrophasor measurement follows the fundamental frequency beyond the fixed Nyquist limits in C37.118 standard, the anti-aliasing filter stopband moves with the measured fundamental frequency.
  • Page 148 Section 6 1MRK 511 365-UUS A Wide area measurement system • CFG-2 frame: The field ANUNIT (4 bytes) specifies the conversion factor as a signed 24 bit word for user defined scaling. Since it is a 24 bit integer, in order to support the floating point scale factor, the scale factor itself is multiplied in 10, so that a minimum of 0.1 scale factor can be sent over the CFG-2 frame.
  • Page 149: Technical Data

    Section 6 1MRK 511 365-UUS A Wide area measurement system The scale factor will be sent as 1 on configuration frame 2, and 0.15 on configuration frame 3. The range of analog values that can be transmitted in this case is -0.15 to -4915.5 and +0.15 to +4915.5.
  • Page 151: Identification

    Section 7 1MRK 511 365-UUS A Impedance protection Section 7 Impedance protection Power swing detection ZMRPSB (68) 7.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Power swing detection ZMRPSB Zpsb SYMBOL-EE V1 EN 7.1.2 Functionality Power swings may occur after disconnection of heavy loads or trip of big generation plants.
  • Page 152: Signals

    Section 7 1MRK 511 365-UUS A Impedance protection 7.1.4 Signals Table 77: ZMRPSB (68) Input signals Name Type Default Description GROUP Group signal for current input SIGNAL GROUP Group signal for voltage input SIGNAL BLOCK BOOLEAN Block of function BLK_SS BOOLEAN Block inhibit of start output for slow swing condition BLK_I0...
  • Page 153: Operation Principle

    Section 7 1MRK 511 365-UUS A Impedance protection Name Values (Range) Unit Step Default Description R1FInRv 0.01 - 1000.00 Ohm/l 0.01 30.00 Fault resistance line to inner resistive boundary, reverse OperationLdCh Disabled Enabled Operation of load discrimination characteristic Enabled RLdOutFw 0.01 - 3000.00 Ohm/p 0.01...
  • Page 154 Section 7 1MRK 511 365-UUS A Impedance protection transition time set on corresponding timers. The impedance measuring principle is the same as that used for the distance protection zones. The impedance and the characteristic passing times are measured in all three phases separately. One-out-of-three or two-out-of-three operating modes can be selected according to the specific system operating conditions.
  • Page 155: Resistive Reach In Forward Direction

    Section 7 1MRK 511 365-UUS A Impedance protection æ ö £ Xset ç ÷ è ø (Equation 4) EQUATION1558 V1 EN The R and X are R and X boundaries. 7.1.6.1 Resistive reach in forward direction To avoid load encroachment, the resistive reach is limited in forward direction by setting the parameter RLdOutFw which is the outer resistive load boundary value while the inner resistive boundary is calculated according to equation 5.
  • Page 156: Reactive Reach In Forward And Reverse Direction

    Section 7 1MRK 511 365-UUS A Impedance protection RLdInRv = kLdRRv·RLdOutRv (Equation 6) EQUATION1187 V2 EN where: kLdRRv is a settable multiplication factor less than 1 From the setting parameter RLdOutRv and the calculated value RLdInRv, a distance between the inner and outer boundary, DRv, is calculated. This value is valid for R direction in second and third quadrant and for X direction in third and fourth quadrant.
  • Page 157 Section 7 1MRK 511 365-UUS A Impedance protection ZMRPSB (68) function can operate in two operating modes: • The 1 out of 3 operating mode is based on detection of power swing in any of the three phases. Figure presents a composition of an internal detection signal DET-A in this particular phase.
  • Page 158 Section 7 1MRK 511 365-UUS A Impedance protection DET-A DET-B DET1of3 - int. DET-C DET2of3 - int. ANSI01000057-2-en.vsd ANSI01000057 V2 EN Figure 38: Detection of power swing for 1-of-3 and 2-of-3 operating mode Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 159: Operating And Inhibit Conditions

    Section 7 1MRK 511 365-UUS A Impedance protection ZOUT_A ZOUT ZOUT_B ZIN_A ZOUT_C ZIN_B ZIN_C TRSP 0-tGF I0CHECK 10ms BLK_I0 0-tR1 INHIBIT -loop 0-tR2 BLK_SS BLOCK -loop DET1of3 - int. REL1PH BLK1PH DET2of3 - int. 0-tH REL2PH BLK2PH PICKUP EXT_PSD en05000114-1-ansi.vsd ANSI05000114 V2 EN Figure 39:...
  • Page 160: Technical Data

    Section 7 1MRK 511 365-UUS A Impedance protection There are four different ways to form the internal INHIBIT signal: • Logical 1 on functional input BLOCK inhibits the output PICKUP signal instantaneously. • The INHIBIT internal signal is activated, if the power swing has been detected and the measured impedance remains within its operate characteristic for the time, which is longer than the time delay set on tR2 timer.
  • Page 161: Out-Of-Step Protection Oosppam (78)

    Section 7 1MRK 511 365-UUS A Impedance protection Out-of-step protection OOSPPAM (78) 7.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Out-of-step protection OOSPPAM < 7.2.2 Functionality The out-of-step protection OOSPPAM (78) function in the IED can be used for both generator protection and as well for line protection applications.
  • Page 162: Signals

    Section 7 1MRK 511 365-UUS A Impedance protection 7.2.3 Function block OOSPPAM (78) I3P1* TRIP I3P2* TRIPZ1 V3P* TRIPZ2 BLOCK PICKUP BLKGEN GENMODE BLKMOT MOTMODE EXTZ1 SLIPFREQ ROTORANG VCOSPHI ANSI14000055-1-en.vsd ANSI12000188 V2 EN Figure 40: OOSPPAM (78) function block 7.2.4 Signals Table 83: OOSPPAM (78) Input signals...
  • Page 163: Settings

    Section 7 1MRK 511 365-UUS A Impedance protection Name Type Description REAL Imaginary part of measured positive-seq impedance % of VBase/(sqrt(3)*IBase) SLIPFREQ REAL Slip frequency in Hz ROTORANG REAL Rotor angle as estimated by the out-of-step function VCOSPHI REAL Estimated Ucos(Phi) voltage during pole slip, in V 7.2.5 Settings Table 85:...
  • Page 164: Monitored Data

    Section 7 1MRK 511 365-UUS A Impedance protection Name Values (Range) Unit Step Default Description ReverseR 0.00 - 1000.00 0.01 1.00 Real part of source impedance behind relay, in % of VBase/(sqrt(3)*IBase) ReverseX 0.00 - 1000.00 0.01 10.00 Imag. part of source impedance behind relay, in % of VBase/(sqrt(3)*IBase) InvertCTCurr Invert current direction...
  • Page 165 Section 7 1MRK 511 365-UUS A Impedance protection approximately equal to the input mechanical power on the generator axis.The currents and voltages are constant and stable. An out-of-step condition is characterized by periodic changes in the rotor angle, that leads to a wild flow of the synchronizing power; so there are also periodic changes of rotational speed, currents and voltages.
  • Page 166 Section 7 1MRK 511 365-UUS A Impedance protection change with time and is mainly a function of the internal induced voltages at both ends of the equivalent two-machine system, that is, at points SE and RE. Measurement of the magnitude, direction and rate-of-change of load impedance relative to a generator’s terminals provides a convenient and generally reliable means of detecting whether machines are out-of-step and pole-slipping is taking place.
  • Page 167: Lens Characteristic

    Section 7 1MRK 511 365-UUS A Impedance protection X [Ohm] Z(R,X) 20 ms fault relay after line out - - - - - - - - - - pre-fault - - - - - - - - - zone 2 - - - Z(R,X) - - -...
  • Page 168 Section 7 1MRK 511 365-UUS A Impedance protection corresponds to the rotor (power) angle of 90 degrees). Figure illustrates construction of the lens characteristic for a power system. Position of the OOS relay is the origin of - - - - - - - - - the R - X plane...
  • Page 169: Detecting An Out-Of-Step Condition

    Section 7 1MRK 511 365-UUS A Impedance protection To be able to automatically construct the lens characteristic for a system shown in Figure 45, the actual power system must be modeled as a two-machine equivalent system, or as a single machine – infinite bus equivalent system, the following information is necessary: Zgen(Rgen, Xgen), Ztr(Rtr, Xtr), Zline(Rline, Xline), Zeq(Req, Xeq), and the setting PickupAngle, for example 120 degrees.
  • Page 170: Maximum Slip Frequency

    Section 7 1MRK 511 365-UUS A Impedance protection Figure 41. When a synchronous machine is out-of-step, pole-slips occur. To recognize a pole-slip, the complex impedance Z(R,X) must traverse the lens from right to left in case of a generator and in the opposite direction in case of a motor. Another requirement is that the travel across the lens takes no less than a specific minimum traverse time, typically 40...60 milliseconds.
  • Page 171: Taking Care Of The Circuit Breaker

    Section 7 1MRK 511 365-UUS A Impedance protection PickupAngle = 120° → fsMax = 25 × 0.333 = 8.333 Hz PickupAngle = 130° → fsMax = 25 × 0.277 = 6.944 Hz The minimum value of fsMax is 6.994 Hz. When PickupAngle = 110 degrees, fsMax = 7.777 Hz.
  • Page 172 Section 7 1MRK 511 365-UUS A Impedance protection The second method This method is more exact. If the break-time of the circuit breaker is known, (and specified as the setting tBreaker) than it is possible to initiate a trip (break) command almost exactly tBreaker milliseconds before the rotor (power) angle reaches 0 degrees, where the currents are at their minimum possible values.
  • Page 173: Design

    Section 7 1MRK 511 365-UUS A Impedance protection very high currents due pos. seq. current in kA to out-of-step condition trip command to CB rotor angle in radian ← after 1st pole slip fault cleared → ← 2nd current increases under fault conditions current decreases fault...
  • Page 174: Technical Data

    Section 7 1MRK 511 365-UUS A Impedance protection Calculation of Calculation of UPSRE UPSRE R and X parts R and X parts UPSIM UPSIM of the complex of the complex Z(R,X) Z(R,X) UPSMAG UPSMAG positive- positive- IPSRE IPSRE sequence sequence Z(R,X) Z(R,X) IPSIM...
  • Page 175: Identification

    Section 8 1MRK 511 365-UUS A Current protection Section 8 Current protection Four step phase overcurrent protection OC4PTOC(51/67) 8.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Four step phase overcurrent protection OC4PTOC 51_67 3-phase output TOC-REVA V2 EN 8.1.2 Functionality...
  • Page 176: Function Block

    Section 8 1MRK 511 365-UUS A Current protection 8.1.3 Function block OC4PTOC (51_67) I3P* TRIP V3P* TRST1 BLOCK TRST2 BLKTR TRST3 BLK1 TRST4 BLK2 TR_A BLK3 TR_B BLK4 TR_C MULTPU1 TRST1_A MULTPU2 TRST1_B MULTPU3 TRST1_C MULTPU4 TRST2_A TRST2_B TRST2_C TRST3_A TRST3_B TRST3_C TRST4_A...
  • Page 177 Section 8 1MRK 511 365-UUS A Current protection Name Type Default Description BLKTR BOOLEAN Block of trip BLK1 BOOLEAN Block of Step1 BLK2 BOOLEAN Block of Step2 BLK3 BOOLEAN Block of Step3 BLK4 BOOLEAN Block of Step4 MULTPU1 BOOLEAN When activated, the pickup multiplier is in use for step1 MULTPU2 BOOLEAN When activated, the pickup multiplier is in use for step2...
  • Page 178: Settings

    Section 8 1MRK 511 365-UUS A Current protection Name Type Description PU_ST4 BOOLEAN Common pickup signal from step4 PU_A BOOLEAN Pickup signal from phase A PU_B BOOLEAN Pickup signal from phase B PU_C BOOLEAN Pickup signal from phase C PU_ST1_A BOOLEAN Pickup signal from step1 phase A PU_ST1_B...
  • Page 179 Section 8 1MRK 511 365-UUS A Current protection Name Values (Range) Unit Step Default Description Characterist1 ANSI Ext. inv. ANSI Def. Time Selection of time delay curve type for step 1 ANSI Very inv. ANSI Norm. inv. ANSI Mod. inv. ANSI Def.
  • Page 180 Section 8 1MRK 511 365-UUS A Current protection Name Values (Range) Unit Step Default Description Pickup2 5 - 2500 Operating phase current level for step 2 in % of IBase 0.000 - 60.000 0.001 0.400 Def time delay or add time delay for inverse char of step 2 0.05 - 999.00 0.01...
  • Page 181 Section 8 1MRK 511 365-UUS A Current protection Name Values (Range) Unit Step Default Description Characterist4 ANSI Ext. inv. ANSI Def. Time Selection of time delay curve type for step 4 ANSI Very inv. ANSI Norm. inv. ANSI Def. Time L.T.E.
  • Page 182 Section 8 1MRK 511 365-UUS A Current protection Name Values (Range) Unit Step Default Description tCCrv1 0.1 - 10.0 Parameter C for customer programmable curve for step 1 tPRCrv1 0.005 - 3.000 0.001 0.500 Parameter PR for customer programmable curve for step 1 tTRCrv1 0.005 - 100.000 0.001...
  • Page 183 Section 8 1MRK 511 365-UUS A Current protection Name Values (Range) Unit Step Default Description tTRCrv3 0.005 - 100.000 0.001 13.500 Parameter TR for customer programmable curve for step 3 tCRCrv3 0.1 - 10.0 Parameter CR for customer programmable curve for step 3 HarmBlock3 Disabled Disabled...
  • Page 184: Monitored Data

    Section 8 1MRK 511 365-UUS A Current protection Table 96: OC4PTOC (51_67) Non group settings (advanced) Name Values (Range) Unit Step Default Description PU1_MinEd2Set 5 - 2500 Minimum settable operating phase current level for step 1 in % of IBase, for 61850 Ed.2 settings PU1_MaxEd2Set 5 - 2500...
  • Page 185: Operation Principle

    Section 8 1MRK 511 365-UUS A Current protection 8.1.7 Operation principle The Four step phase overcurrent protection OC4PTOC (51_67) is divided into four different sub-functions, one for each step. For each step x , where x is step 1, 2, 3 and 4, an operation mode is set by DirModeSelx: Disable/Non-directional/Forward/Reverse.
  • Page 186 Section 8 1MRK 511 365-UUS A Current protection 4 step over current element faultState Direction dirPhAFlt faultState One element for each Element dirPhBFlt step PICKUP dirPhCFlt TRIP Harmonic harmRestrBlock Restraint Element enableDir Mode Selection enableStep1-4 DirectionalMode1-4 ANSI05000740-2-en.vsd ANSI05000740 V2 EN Figure 50: Functional overview of OC4PTOC (51/67) A common setting for all steps, NumPhSel, is used to specify the number of phase currents...
  • Page 187 Section 8 1MRK 511 365-UUS A Current protection component as well as from higher current harmonic. The selected current values are fed to OC4PTOC (51/67). In a comparator, the DFT or RMS values are compared to the set operation current value of the function (Pickup1, Pickup2, Pickup3, Pickup4) for each phase current.
  • Page 188 Section 8 1MRK 511 365-UUS A Current protection dir A (Equation 11) ANSIEQUATION1452 V1 EN ref B dir B (Equation 12) ANSIEQUATION1453 V1 EN ref C dir C (Equation 13) ANSIEQUATION1454 V1 EN The polarizing voltage is available as long as the positive-sequence voltage exceeds 4% of the set base voltage VBase.
  • Page 189 Section 8 1MRK 511 365-UUS A Current protection Reverse Forward en05000745.vsd IEC05000745 V1 EN Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 190 Section 8 1MRK 511 365-UUS A Current protection Reverse Forward en05000745_ansi.vsd ANSI05000745 V1 EN Figure 51: Directional characteristic of the phase overcurrent protection The default value of AngleRCA is –65°. The parameters AngleROA gives the angle sector from AngleRCA for directional borders. A minimum current for directional phase pickup current signal can be set.
  • Page 191 Section 8 1MRK 511 365-UUS A Current protection All four steps in OC4PTOC (51/67) can be blocked from the binary input BLOCK. The binary input BLKx (x=1, 2, 3 or 4) blocks the operation of respective step. Characteristx=DefTime 0-tx a>b Pickupx 0-txMin Inve rse...
  • Page 192 Section 8 1MRK 511 365-UUS A Current protection DFWDLx DFWDLxx DREVLx Directional Element AngleRCA DREVLxx FORWARD_int Directional AngleROA Release REVERSE_int Block STLx Greater Comparator PUminOpPhSel x- means three phases 1,2 and 3 xx – means phase to phase 12,23,31 ANSI15000266-1-en.vsdx ANSI15000266 V1 EN Figure 53: OC4 directional release block diagram...
  • Page 193: Technical Data

    Section 8 1MRK 511 365-UUS A Current protection BLOCK a>b 0.07*IBase a>b Extract second harmonic current a>b component 2ndH_BLOCK_Int Extract fundamental current component 2ndHarmStab IEC13000014-2-en.vsd IEC13000014 V2 EN Figure 54: Second harmonic blocking 8.1.8 Technical data Table 98: OC4PTOC (51/67) technical data Function Setting range Accuracy...
  • Page 194: Four Step Residual Overcurrent Protection, (Zero Sequence Or Negative Sequence Directionality) Ef4Ptoc (51N/67N)

    Section 8 1MRK 511 365-UUS A Current protection Function Setting range Accuracy Operate time, start non-directional Min. = 5 ms at 0 to 10 x I Max. = 20 ms Reset time, start non-directional at Min. = 20 ms 10 to 0 x I Max.
  • Page 195: Function Block

    Section 8 1MRK 511 365-UUS A Current protection EF4PTOC (51N/67N) can also be used to provide a system back-up for example, in the case of the primary protection being out of service due to communication or voltage transformer circuit failure. Directional operation can be combined together with corresponding communication logic in permissive or blocking teleprotection scheme.
  • Page 196: Settings

    Section 8 1MRK 511 365-UUS A Current protection Name Type Default Description I3PDIR GROUP Group connection for directional current SIGNAL BLOCK BOOLEAN General block BLKTR BOOLEAN Block of trip BLK1 BOOLEAN Block of step 1 (Pickup and trip) BLK2 BOOLEAN Block of step 2 (Pickup and trip) BLK3 BOOLEAN...
  • Page 197 Section 8 1MRK 511 365-UUS A Current protection Table 101: EF4PTOC (51N_67N) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled EnDir Disable Enable Enabling the Directional calculation Enable AngleRCA -180 - 180 Relay Characteristic Angle (RCA) polMethod Voltage...
  • Page 198 Section 8 1MRK 511 365-UUS A Current protection Name Values (Range) Unit Step Default Description DirModeSel1 Disabled Non-directional Directional mode of step 1 (Off, Non-dir, Non-directional Forward, Reverse) Forward Reverse Characterist1 ANSI Ext. inv. ANSI Def. Time Time delay characteristic for step 1 ANSI Very inv.
  • Page 199 Section 8 1MRK 511 365-UUS A Current protection Name Values (Range) Unit Step Default Description Characterist2 ANSI Ext. inv. ANSI Def. Time Time delay characteristic for step 2 ANSI Very inv. ANSI Norm. inv. ANSI Mod. inv. ANSI Def. Time L.T.E.
  • Page 200 Section 8 1MRK 511 365-UUS A Current protection Name Values (Range) Unit Step Default Description Characterist3 ANSI Ext. inv. ANSI Def. Time Time delay characteristic for step 3 ANSI Very inv. ANSI Norm. inv. ANSI Mod. inv. ANSI Def. Time L.T.E.
  • Page 201 Section 8 1MRK 511 365-UUS A Current protection Name Values (Range) Unit Step Default Description Characterist4 ANSI Ext. inv. ANSI Def. Time Time delay characteristic for step 4 ANSI Very inv. ANSI Norm. inv. ANSI Mod. inv. ANSI Def. Time L.T.E.
  • Page 202 Section 8 1MRK 511 365-UUS A Current protection Name Values (Range) Unit Step Default Description tPRCrv1 0.005 - 3.000 0.001 0.500 Param PR for customized inverse reset time curve for step 1 tTRCrv1 0.005 - 100.000 0.001 13.500 Param TR for customized inverse reset time curve for step 1 tCRCrv1 0.1 - 10.0...
  • Page 203 Section 8 1MRK 511 365-UUS A Current protection Name Values (Range) Unit Step Default Description tReset4 0.000 - 60.000 0.001 0.020 Reset time delay for step 4 tPCrv4 0.005 - 3.000 0.001 1.000 Param P for customized inverse trip time curve for step 4 tACrv4 0.005 - 200.000...
  • Page 204: Monitored Data

    Section 8 1MRK 511 365-UUS A Current protection Name Values (Range) Unit Step Default Description PU3_MinEd2Set 1 - 2500 Minimum settable operate residual current level for step 3 in % of IBase, for 61850 Ed.2 settings PU3_MaxEd2Set 1 - 2500 2500 Maximum settable operate residual current level for step 3 in % of IBase, for 61850 Ed.2...
  • Page 205: Operating Quantity Within The Function

    Section 8 1MRK 511 365-UUS A Current protection 8.2.7.1 Operating quantity within the function The function always uses Residual Current (3I ) for its operating quantity. The residual current can be: directly measured (when a dedicated CT input of the IED is connected in PCM600 to the fourth analog input of the pre-processing block connected to EF4PTOC (51N/ 67N) function input I3P).
  • Page 206: Internal Polarizing

    Section 8 1MRK 511 365-UUS A Current protection 8.2.7.2 Internal polarizing A polarizing quantity is used within the protection in order to determine the direction to the ground fault (Forward/Reverse). The function can be set to use voltage polarizing, current polarizing or dual polarizing. Voltage polarizing When voltage polarizing is selected the protection will use the residual voltage -3V polarizing quantity V3P.
  • Page 207 Section 8 1MRK 511 365-UUS A Current protection It shall be noted that residual voltage (-3V ) or negative sequence voltage (-3V ) is used to determine the location of the ground fault. This insures the required inversion of the polarizing voltage within the ground-fault function.
  • Page 208: External Polarizing For Ground-Fault Function

    Section 8 1MRK 511 365-UUS A Current protection Dual polarizing When dual polarizing is selected the function will use the vectorial sum of the voltage based and current based polarizing in accordance with the following formula: × × VTotPol VVPol VIPol IPol RNPol jXNPol...
  • Page 209: Internal Ground-Fault Protection Structure

    Section 8 1MRK 511 365-UUS A Current protection 8.2.7.6 Internal ground-fault protection structure The protection is internally divided into the following parts: Four residual overcurrent steps. Directional supervision element for residual overcurrent steps with integrated directional comparison step for communication based ground-fault protection schemes (permissive or blocking).
  • Page 210: Directional Supervision Element With Integrated Directional Comparison Function

    Section 8 1MRK 511 365-UUS A Current protection BLKTR EMULTX IMinx Characteristx=DefTime a>b TRSTx a>b PUSTx MultPUx Pickupx tMin Inverse BLKx BLOCK Characteristx=Inverse 2ndHarm_BLOCK_Int HarmRestrainx=Disabled STEPx_DIR_Int DirModex=Off DirModex=Non-directional DirModex=Forward FORWARD_Int DirModex=Reverse REVERSE_Int ANSI10000008-4-en.vsd ANSI10000008 V3 EN Figure 56: Simplified logic diagram for residual overcurrent step x, where x = step 1, 2, 3 or 4 The protection can be completely blocked from the binary input BLOCK.
  • Page 211 Section 8 1MRK 511 365-UUS A Current protection When polMethod = Voltage, VPol will be used as polarizing quantity. When polMethod = Current, IPol will be used as polarizing quantity. WhenpolMethod = Dual, VPol + IPol · ZNPol will be used as polarizing quantity. The operating and polarizing quantity are then used inside the directional element, as shown in figure 57, in order to determine the direction of the ground fault.
  • Page 212 Section 8 1MRK 511 365-UUS A Current protection Directional comparison step, built-in within directional supervision element, will set EF4PTOC (51N/67N) function output binary signals: PUFW=1 when operating quantity magnitude Iop x cos(φ - AngleRCA) is bigger than setting parameter IDirPU and directional supervision element detects fault in forward direction.
  • Page 213: Second Harmonic Blocking Element

    Section 8 1MRK 511 365-UUS A Current protection IopDir PUREV a>b REVERSE_Int PUFW a>b IDirPU FORWARD_Int FORWARD_Int AngleRCA polMethod=Voltage VPolMin polMethod=Dual IPolMin VPol I3PDIR polMethod=Current VTPol IPol REVERSE_Int VIPol STAGE1_DIR_Int RNPol Complex STAGE2_DIR_Int Number XNPol STAGE3_DIR_Int STAGE4_DIR_Int BLOCK ANSI07000067-4-en.vsd ANSI07000067 V4 EN Figure 58: Simplified logic diagram for directional supervision element with integrated directional comparison step 8.2.7.9...
  • Page 214 Section 8 1MRK 511 365-UUS A Current protection Current fundamental frequency component > IMinOpHarmBlk Current second harmonic component > IMinOpHarmBlk Ratio of the 2nd harmoinc component in relation to the fundamental frequency component in the residual current exceeds the preset level defined parameter 2ndHarmStab setting If all the above three conditions are fulfilled then ST2NDHRM function output signal is set to logical value one and harmonic restraining feature to the function block is...
  • Page 215: Switch On To Fault Feature

    Section 8 1MRK 511 365-UUS A Current protection BLOCK a>b 0.07*IBase a>b Extract second harmonic current a>b component Extract fundamental current component 2ndHarmStab 0-70ms 2ndH_BLOCK_Int BlkParTransf=On a>b Use_PUValue Pickup1> Pickup2> Pickup3> Pickup4> ANSI13000015-1-en.vsd ANSI13000015 V1 EN Figure 59: Simplified logic diagram for 2nd harmonic blocking feature and Block for Parallel Transformers feature 8.2.7.10 Switch on to fault feature Integrated in the four step residual overcurrent protection are Switch on to fault logic...
  • Page 216 Section 8 1MRK 511 365-UUS A Current protection parameter SOTFSel can be set for activation of CB position open change, CB position closed change or CB close command. In case of a residual current pickup from step 2 or 3 (dependent on setting) the function will give a trip after a set delay tSOTF. This delay is normally set to a short time (default 200 ms).
  • Page 217: Technical Data

    Section 8 1MRK 511 365-UUS A Current protection EF4PTOC (51N/67N) Logic Diagram Simplified logic diagram for the complete EF4PTOC (51N/67N) function is shown in figure 61: signal to communication scheme Directional Check Element step over current INPol Direction element operatingCurrent TRIP Element One element for each...
  • Page 218: Four Step Directional Negative Phase Sequence Overcurrent Protection Ns4Ptoc (46I2)

    Section 8 1MRK 511 365-UUS A Current protection Function Range or value Accuracy Minimum operate time for inverse (0.000 - 60.000) s ±0.2% or ±35 ms whichever is curves, step 1 - 4 greater Inverse time characteristics, see 16 curve types See Table 692, Table Table 692, Table and Table...
  • Page 219: Functionality

    Section 8 1MRK 511 365-UUS A Current protection 8.3.2 Functionality Four step negative sequence overcurrent protection (NS4PTOC, (4612) ) has an inverse or definite time delay independent for each step separately. All IEC and ANSI time delayed characteristics are available together with an optional user defined characteristic.
  • Page 220: Signals

    Section 8 1MRK 511 365-UUS A Current protection 8.3.4 Signals Table 107: NS4PTOC (46I2) Input signals Name Type Default Description GROUP Group connection for operate current SIGNAL I3PDIR GROUP Group connection for directional current SIGNAL GROUP Group connection for polarizing voltage SIGNAL BLOCK BOOLEAN...
  • Page 221: Settings

    Section 8 1MRK 511 365-UUS A Current protection 8.3.5 Settings Table 109: NS4PTOC (46I2) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled EnDir Disable Enable Enabling the Directional calculation Enable AngleRCA -180 - 180 Relay characteristic angle (RCA) VPolMin 1 - 100...
  • Page 222 Section 8 1MRK 511 365-UUS A Current protection Name Values (Range) Unit Step Default Description DirModeSel2 Disabled Non-directional Directional mode of step 2 (Disabled, Nondir, Non-directional Forward, Reverse) Forward Reverse Characterist2 ANSI Ext. inv. ANSI Def. Time Time delay characteristic for step 2 ANSI Very inv.
  • Page 223 Section 8 1MRK 511 365-UUS A Current protection Name Values (Range) Unit Step Default Description Characterist3 ANSI Ext. inv. ANSI Def. Time Time delay characteristic for step 3 ANSI Very inv. ANSI Norm. inv. ANSI Mod. inv. ANSI Def. Time L.T.E.
  • Page 224 Section 8 1MRK 511 365-UUS A Current protection Name Values (Range) Unit Step Default Description I2-4> 1 - 2500 Negative sequence current op level for step 4 in % of IBase 0.000 - 60.000 0.001 1.200 Time delay of step 4 when definite time char. is selected 0.05 - 999.00 0.01...
  • Page 225 Section 8 1MRK 511 365-UUS A Current protection Name Values (Range) Unit Step Default Description tCCrv2 0.1 - 10.0 Param C for customized inverse trip time curve for step 2 tPRCrv2 0.005 - 3.000 0.001 0.500 Param PR for customized inverse reset time curve for step 2 tTRCrv2 0.005 - 100.000...
  • Page 226: Monitored Data

    Section 8 1MRK 511 365-UUS A Current protection Table 111: NS4PTOC (46I2) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 12 Selection of one of the Global Base Value groups 8.3.6 Monitored data Table 112: NS4PTOC (46I2) Monitored data Name Type...
  • Page 227: Internal Polarizing Facility Of The Function

    Section 8 1MRK 511 365-UUS A Current protection where: IA, IB, IC are fundamental frequency phasors of three individual phase currents. is so called operator which gives a phase shift of 120 deg, that is, a = 1∠120 deg similarly gives a phase shift of 240 deg, that is, a = 1∠240 deg The phasor magnitude is used within the NS4PTOC (4612) protection to compare it with the set operation current value of the four steps (Pickup1, Pickup2, Pickup3 or Pickup4).
  • Page 228: External Polarizing For Negative Sequence Function

    Section 8 1MRK 511 365-UUS A Current protection Note that –V2 is used to determine the location of the fault. This ensures the required inversion of the polarizing voltage within the function. 8.3.7.3 External polarizing for negative sequence function The individual steps within the protection can be set as non-directional. When this setting is selected it is then possible via function binary input BLKx (where x indicates the relevant step within the protection) to provide external directional control (that is, torque control) by for example using one of the following functions if available in the IED:...
  • Page 229 Section 8 1MRK 511 365-UUS A Current protection • Type of reset characteristic (Instantaneous / IEC Reset /ANSI reset).By this parameter setting it is possible to select the reset characteristic of the stage. For the complete list of available reset curves, refer to Chapter ""...
  • Page 230: Directional Supervision Element With Integrated Directional Comparison Function

    Section 8 1MRK 511 365-UUS A Current protection 8.3.7.6 Directional supervision element with integrated directional comparison function At least one of the four negative sequence overcurrent steps must be set as directional in order to enable execution of the directional supervision element and the integrated directional comparison function.
  • Page 231 Section 8 1MRK 511 365-UUS A Current protection Directional comparison step, built-in within directional supervision element, set NS4PTOC (4612) output binary signals: PUFW=1 when tip of I2 phasor (operating quantity magnitude) is in forward area, see (Operating quantity magnitude is bigger than setting INDirPU) PUREV=1 when tip of I2 phasor (operating quantity magnitude) is in the reverse area, see fig 57.
  • Page 232: Technical Data

    Section 8 1MRK 511 365-UUS A Current protection 8.3.8 Technical data Table 113: NS4PTOC (46I2) technical data Function Range or value Accuracy lBase Trip value, step 1 - 4 (1-2500)% of ±1.0% of I at I £ I ±1.0% of I at I > I IBase Reset ratio >...
  • Page 233: Sensitive Directional Residual Overcurrent And Power Protection Sdepsde (67N)

    Section 8 1MRK 511 365-UUS A Current protection Sensitive directional residual overcurrent and power protection SDEPSDE (67N) 8.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Sensitive directional residual over SDEPSDE current and power protection 8.4.2 Functionality In networks with high impedance grounding, the phase-to-ground fault current is...
  • Page 234 Section 8 1MRK 511 365-UUS A Current protection As the magnitude of the residual current is independent of the fault location, the selectivity of the ground fault protection is achieved by time selectivity. When should the sensitive directional residual overcurrent protection be used and when should the sensitive directional residual power protection be used? Consider the following: •...
  • Page 235: Function Block

    Section 8 1MRK 511 365-UUS A Current protection 8.4.3 Function block SDEPSDE (67N) I3P* TRIP V3P* TRDIRIN BLOCK TRNDIN BLKTR TRVN BLKTRDIR PICKUP BLKNDN PUDIRIN BLKVN PUNDIN PUVN PUFW PUREV VNREL ANSI07000032-2-en.vsd ANSI07000032 V2 EN Figure 67: SDEPSDE (67N) function block 8.4.4 Signals Table 114:...
  • Page 236: Settings

    Section 8 1MRK 511 365-UUS A Current protection Name Type Description PUFW BOOLEAN Pickup of directional function for a fault in forward direction PUREV BOOLEAN Pickup of directional function for a fault in reverse direction INTEGER Direction of fault. A general signal common to all three mode of residual over current protection VNREL BOOLEAN...
  • Page 237 Section 8 1MRK 511 365-UUS A Current protection Name Values (Range) Unit Step Default Description TimeChar ANSI Ext. inv. IEC Norm. inv. Operation curve selection for IDMT operation ANSI Very inv. ANSI Norm. inv. ANSI Mod. inv. ANSI Def. Time L.T.E.
  • Page 238: Monitored Data

    Section 8 1MRK 511 365-UUS A Current protection Table 118: SDEPSDE (67N) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 12 Global base selection for function groups Table 119: SDEPSDE (67N) Non group settings (advanced) Name Values (Range) Unit...
  • Page 239 Section 8 1MRK 511 365-UUS A Current protection rotated by the set characteristic angle RCADir. RCADir is normally set equal to 0 in a high impedance grounded network with a neutral point resistor as the active current component is appearing out on the faulted feeder only. RCADir is set equal to -90° in an isolated network as all currents are mainly capacitive.
  • Page 240 Section 8 1MRK 511 365-UUS A Current protection RCA = -90°, ROA = 90° ) – ang(V = ang(3I en06000649_ansi.vsd ANSI06000649 V1 EN Figure 69: RCADir set to -90° For trip, the operating quantity 3I cos φ, the residual current 3I , and the residual voltage must be larger than the set levels : INCosPhiPU, INRelPU and VNRelPU.
  • Page 241 Section 8 1MRK 511 365-UUS A Current protection  0 RCADir Trip area    3   ROADir ANSI06000650-3-en.vsd ANSI06000650 V3 EN Figure 70: Characteristic with ROADir restriction The function indicates forward/reverse direction to the fault. Reverse direction is defined as 3I ·cos (φ...
  • Page 242 Section 8 1MRK 511 365-UUS A Current protection RCADir = 0º Trip area Instrument transformer  angle error RCAcomp Characteristic after angle compensation (to prot) (prim) ANSI06000651-2-en.vsd ANSI06000651 V2 EN Figure 71: Explanation of RCAComp Directional residual power protection measuring 3I ·...
  • Page 243 Section 8 1MRK 511 365-UUS A Current protection the inverse time delay (setting TDSN) the binary output signals TRIP and TRDIRIN get activated. The function shall indicate forward/reverse direction to the fault. Reverse direction is ·cos (φ + 180°) ³ the set value. defined as 3I ·...
  • Page 244 Section 8 1MRK 511 365-UUS A Current protection Trip from this function can be blocked from the binary input BLKTRDIR. When the function picks up, binary output signals PICKUP and PUDIRIN are activated. If the output signals PICKUP and PUDIRIN remain active for the set delay tDef the binary output signals TRIP and TRDIRIN get activated.
  • Page 245 Section 8 1MRK 511 365-UUS A Current protection In addition, there is also a separate non-directional residual over voltage protection, with its own definite time delay tVN and set level VN_PU. For trip, the residual voltage 3V shall be larger than the set level (VN_PU). Trip from this function can be blocked from the binary input BLKVN.
  • Page 246: Technical Data

    Section 8 1MRK 511 365-UUS A Current protection 8.4.8 Technical data Table 121: SDEPSDE (67N) technical data Function Range or value Accuracy lBase Trip level for 3I ·cosj (0.25-200.00)% of ±1.0% of I at I £ I directional residual ±1.0% of I at I > I overcurrent SBase Trip level for 3I0·3V...
  • Page 247: Thermal Overload Protection, One Time Constant Fahrenheit/Celsius Lfpttr/Lcpttr (26)

    Section 8 1MRK 511 365-UUS A Current protection Thermal overload protection, one time constant Fahrenheit/Celsius LFPTTR/LCPTTR (26) 8.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Thermal overload protection, one time LFPTTR constant, Fahrenheit Thermal overload protection, one time LCPTTR constant, Celsius 8.5.2...
  • Page 248: Function Block

    Section 8 1MRK 511 365-UUS A Current protection 8.5.3 Function block LCPTTR (26) I3P* TRIP BLOCK BFI_3P BLKTR ALARM MULTPU LOCKOUT AMBTEMP SENSFLT RESET ANSI14000052-1-en.vsd ANSI13000199 V2 EN LFPTTR (26) I3P* TRIP BLOCK BFI_3P BLKTR ALARM MULTPU LOCKOUT AMBTEMP SENSFLT RESET ANSI14000054-1-en.vsd ANSI13000301 V2 EN...
  • Page 249: Settings

    Section 8 1MRK 511 365-UUS A Current protection Name Type Default Description AMBTEMP REAL Ambient temperature from external temperature sensor SENSFLT BOOLEAN Validity status of ambient temperature sensor RESET BOOLEAN Reset of internal thermal load counter Table 124: LCPTTR (26) Output signals Name Type Description...
  • Page 250 Section 8 1MRK 511 365-UUS A Current protection Name Values (Range) Unit Step Default Description AmbiSens Disabled Disabled External temperature sensor available Enabled DefaultAmbTemp -50 - 100 Deg C Ambient temperature used when AmbiSens is set to Off. DefaultTemp -50 - 300 Deg C Temperature rise above ambient temperature at pickup...
  • Page 251: Monitored Data

    Section 8 1MRK 511 365-UUS A Current protection 8.5.6 Monitored data Table 130: LCPTTR (26) Monitored data Name Type Values (Range) Unit Description TTRIP INTEGER Estimated time to trip (in min) TENRECL REAL Estimated time to reset of lockout (in min) TEMP REAL Calculated temperature of the...
  • Page 252 Section 8 1MRK 511 365-UUS A Current protection æ ö × ç ÷ ç ÷ final è ø (Equation 23) EQUATION1167 V1 EN where: is the largest phase current, is a given reference current and is steady state temperature rise corresponding to I The ambient temperature is added to the calculated final temperature.
  • Page 253 Section 8 1MRK 511 365-UUS A Current protection There is also a calculation of the present time to trip with the present current. This calculation is only performed if the final temperature is calculated to be above the operation temperature: ...
  • Page 254 Section 8 1MRK 511 365-UUS A Current protection PICKUP Final Temp > Trip Temp TEMP Calculation of actual temperature AMBTEMP ALARM Actual Temp > Alarm Temp Calculation of final temperature ENMULT TRIP Actual Temp > Trip Temp SENSFLT LOCKOUT Lockout logic Actual Temp <...
  • Page 255: Technical Data

    Section 8 1MRK 511 365-UUS A Current protection 8.5.8 Technical data Table 132: LFPTTR/LCPTTR (26)technical data Function Range or value Accuracy Reference current (2-400)% of IBase ±1.0% of I Reference temperature (0-600)°F, 0 - 300)°C ±2.0°F, ±2.0°C Trip time: IEC 60255-149, ±5.0% Time constant t = (1–1000) or ±200 ms whichever minutes...
  • Page 256 Section 8 1MRK 511 365-UUS A Current protection Sometimes, the mechanical power from a prime mover may decrease so much that it does not cover bearing losses and ventilation losses. Then, the synchronous generator becomes a synchronous motor and starts to take electric power from the rest of the power system. This operating state, where individual synchronous machines operate as motors, implies no risk for the machine itself.
  • Page 257: Function Block

    Section 8 1MRK 511 365-UUS A Current protection 8.6.3 Function block GUPPDUP (37) I3P* TRIP V3P* TRIP1 BLOCK TRIP2 BLOCK1 PICKUP BLOCK2 PICKUP1 PICKUP2 PPERCENT QPERCENT ANSI07000027-2-en.vsd ANSI07000027 V2 EN Figure 77: GUPPDUP (37) function block 8.6.4 Signals Table 133: GUPPDUP (37) Input signals Name Type...
  • Page 258: Settings

    Section 8 1MRK 511 365-UUS A Current protection 8.6.5 Settings Table 135: GUPPDUP (37) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled OpMode1 Disabled UnderPower Operation mode for stage 1 Off / On UnderPower Power1 0.0 - 500.0...
  • Page 259: Monitored Data

    Section 8 1MRK 511 365-UUS A Current protection Name Values (Range) Unit Step Default Description IAngComp5 -10.000 - 10.000 0.001 0.000 Corr of error betw current and voltage angles at 5% of Ir IAngComp30 -10.000 - 10.000 0.001 0.000 Corr of error betw current and voltage angles at 30% of Ir IAngComp100 -10.000 - 10.000...
  • Page 260 Section 8 1MRK 511 365-UUS A Current protection Chosen current phasors Derivation of Complex S( angle) S( angle) < TRIP 1 S( composant) power Power1 Chosen voltage calculation in Char angle phasors PICKUP1 S( angle) < TRIP2 Power2 PICKUP2 P = POWRE Q = POWIM ANSI06000438-2-en.vsd ANSI06000438 V2 EN...
  • Page 261 Section 8 1MRK 511 365-UUS A Current protection Mode Set value: Formula used for complex power calculation × (Equation 33) EQUATION2060-ANSI V1 EN = × × (Equation 34) EQUATION2061-ANSI V1 EN = × × (Equation 35) EQUATION2062-ANSI V1 EN = × ×...
  • Page 262: Low Pass Filtering

    Section 8 1MRK 511 365-UUS A Current protection If the measured power drops under the drop-power1(2) value, the function will reset after a set time DropDelay1(2). The reset means that the pickup signal will drop out and that the timer of the stage will reset. 8.6.7.1 Low pass filtering In order to minimize the influence of the noise signal on the measurement it is possible to...
  • Page 263 Section 8 1MRK 511 365-UUS A Current protection Magnitude % of In compensation IMagComp5 Measured current IMagComp30 IMagComp100 % of In 0-5%: Constant 5-30-100%: Linear >100%: Constant Angle Degrees compensation Measured IAngComp30 current IAngComp5 IAngComp100 % of In ANSI05000652_3_en.vsd ANSI05000652 V3 EN Figure 79: Calibration curves The first current and voltage phase in the group signals will be used as reference and the...
  • Page 264: Technical Data

    Section 8 1MRK 511 365-UUS A Current protection 8.6.8 Technical data Table 140: GUPPDUP (37) technical data Function Range or value Accuracy SBase Power level (0.0–500.0)% of ±1.0% of S at S ≤ S for Step 1 and Step 2 ±1.0% of S at S >...
  • Page 265: Function Block

    Section 8 1MRK 511 365-UUS A Current protection Figure illustrates the low forward power and reverse power protection with underpower and overpower functions respectively. The underpower IED gives a higher margin and should provide better dependability. On the other hand, the risk for unwanted operation immediately after synchronization may be higher.
  • Page 266: Signals

    Section 8 1MRK 511 365-UUS A Current protection 8.7.4 Signals Table 141: GOPPDOP (32) Input signals Name Type Default Description GROUP Current group connection SIGNAL GROUP Voltage group connection SIGNAL BLOCK BOOLEAN Block of function BLOCK1 BOOLEAN Block of stage 1 BLOCK2 BOOLEAN Block of stage 2...
  • Page 267 Section 8 1MRK 511 365-UUS A Current protection Name Values (Range) Unit Step Default Description OpMode2 Disabled OverPower Operation mode for stage 2 Off / On OverPower Power2 0.0 - 500.0 120.0 Stage 2 overpower setting in Angle2 direction in % of SBase Angle2 -180.0 - 180.0 Characteristic angle for max power senistivity...
  • Page 268: Monitored Data

    Section 8 1MRK 511 365-UUS A Current protection Table 145: GOPPDOP (32) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 12 Selection of one of the Global Base Value groups Mode A, B, C Pos Seq Selection of measured current and voltage Arone...
  • Page 269 Section 8 1MRK 511 365-UUS A Current protection Chosen current phasors Derivation of S(angle) Complex S(angle) > TRIP1 S(composant) power Power1 Chosen voltage in Char angle calculation phasors PICKUP1 TRIP2 S(angle) > Power2 PICKUP2 P = POWRE Q = POWIM ANSI06000567-2-en.vsd ANSI06000567 V2 EN Figure 82:...
  • Page 270 Section 8 1MRK 511 365-UUS A Current protection Mode Set value: Formula used for complex power calculation × (Equation 43) EQUATION2043 V1 EN = × × S 3 V (Equation 44) EQUATION2044 V1 EN = × × (Equation 45) EQUATION2045 V1 EN = ×...
  • Page 271: Low Pass Filtering

    Section 8 1MRK 511 365-UUS A Current protection 8.7.7.1 Low pass filtering In order to minimize the influence of the noise signal on the measurement it is possible to introduce the recursive, low pass filtering of the measured values for S (P, Q). This will make slower measurement response to the step changes in the measured quantity.
  • Page 272 Section 8 1MRK 511 365-UUS A Current protection Magnitude % of In compensation IMagComp5 Measured current IMagComp30 IMagComp100 % of In 0-5%: Constant 5-30-100%: Linear >100%: Constant Angle Degrees compensation Measured IAngComp30 current IAngComp5 IAngComp100 % of In ANSI05000652_3_en.vsd ANSI05000652 V3 EN Figure 83: Calibration curves The first current and voltage phase in the group signals will be used as reference and the...
  • Page 273: Technical Data

    Section 8 1MRK 511 365-UUS A Current protection 8.7.8 Technical data Table 148: GOPPDOP (32) technical data Function Range or value Accuracy Power level (0.0–500.0)% of SBase ±1.0% of S at S ≤ S for Step 1 and Step 2 ±1.0% of S at S >...
  • Page 275: Two Step Undervoltage Protection Uv2Ptuv (27)

    Section 9 1MRK 511 365-UUS A Voltage protection Section 9 Voltage protection Two step undervoltage protection UV2PTUV (27) 9.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Two step undervoltage protection UV2PTUV 3U< SYMBOL-R-2U-GREATER-THAN V2 EN 9.1.2 Functionality Undervoltages can occur in the power system during faults or abnormal conditions.
  • Page 276: Function Block

    Section 9 1MRK 511 365-UUS A Voltage protection 9.1.3 Function block UV2PTUV (27) V3P* TRIP BLOCK TRST1 BLKTR1 TRST1_A BLK1 TRST1_B BLKTR2 TRST1_C BLK2 TRST2 TRST2_A TRST2_B TRST2_C PICKUP PU_ST1 PU_ST1_A PU_ST1_B PU_ST1_C PU_ST2 PU_ST2_A PU_ST2_B PU_ST2_C ANSI06000276-2-en.vsd ANSI06000276 V2 EN Figure 84: UV2PTUV (27) function block 9.1.4...
  • Page 277: Settings

    Section 9 1MRK 511 365-UUS A Voltage protection Name Type Description TRST2_B BOOLEAN Trip signal from step2 phase B TRST2_C BOOLEAN Trip signal from step2 phase C PICKUP BOOLEAN Common pickup signal PU_ST1 BOOLEAN Common pickup signal from step1 PU_ST1_A BOOLEAN Pickup signal from step1 phase A PU_ST1_B...
  • Page 278 Section 9 1MRK 511 365-UUS A Voltage protection Name Values (Range) Unit Step Default Description HystAbs1 0.0 - 50.0 Absolute hysteresis in % of VBase, step 1 OperationStep2 Disabled Enabled Enable execution of step 2 Enabled Characterist2 Definite time Definite time Selection of time delay curve type for step 2 Inverse curve A Inverse curve B...
  • Page 279: Monitored Data

    Section 9 1MRK 511 365-UUS A Voltage protection Name Values (Range) Unit Step Default Description CrvSat1 0 - 100 Tuning param for prog. under voltage Inverse- Time curve, step 1 tReset2 0.000 - 60.000 0.001 0.025 Reset time delay used in IEC Definite Time curve step 2 ResetTypeCrv2 Instantaneous...
  • Page 280: Operation Principle

    Section 9 1MRK 511 365-UUS A Voltage protection 9.1.7 Operation principle Two-step undervoltage protection (UV2PTUV ,27) is used to detect low power system voltage. UV2PTUV (27) has two voltage measuring steps with separate time delays. If one, two or three phase voltages decrease below the set value, a corresponding PICKUP signal is generated.
  • Page 281: Time Delay

    Section 9 1MRK 511 365-UUS A Voltage protection 9.1.7.2 Time delay The time delay for the two steps can be either definite time delay (DT) or inverse time undervoltage (TUV). For the inverse time delay three different modes are available: •...
  • Page 282 Section 9 1MRK 511 365-UUS A Voltage protection (1.0 – CrvSatn/100) the used voltage will be: Vpickup< · (1.0 – CrvSatn/100). If the programmable curve is used this parameter must be calculated so that: CrvSatn × > (Equation 53) EQUATION1435 V1 EN The lowest voltage is always used for the inverse time delay integration.
  • Page 283 Section 9 1MRK 511 365-UUS A Voltage protection tIReset1 tIReset1 Voltage Measured PICKUP Voltage HystAbs1 TRIP PICKUP1 Time PICKUP TRIP Time Integrator Frozen Timer Time Linearly Instantaneous decreased ANSI05000010-3-en.vsd ANSI05000010 V3 EN Figure 86: Voltage profile not causing a reset of the pickup signal for step 1, and inverse time delay at different reset types Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 284 Section 9 1MRK 511 365-UUS A Voltage protection tIReset1 Voltage tIReset1 PICKUP PICKUP HystAbs1 Measured Voltage TRIP PICKUP 1 Time PICKUP TRIP Time Integrator Frozen Timer Time Linearly Instantaneous decreased ANSI05000011-2-en.vsd ANSI05000011 V2 EN Figure 87: Voltage profile causing a reset of the pickup signal for step 1, and inverse time delay at different reset types Definite timer delay Phasor measurement unit RES670 2.1 ANSI...
  • Page 285 Section 9 1MRK 511 365-UUS A Voltage protection When definite time delay is selected the function will trip as shown in figure 88. Detailed information about individual stage reset/operation behavior is shown in figure figure respectively. Note that by setting tResetn = 0.0s, instantaneous reset of the definite time delayed stage is ensured.
  • Page 286: Blocking

    Section 9 1MRK 511 365-UUS A Voltage protection Pickup1 PU_ST1 TRST1 tReset1 ANSI10000040-3-en.vsd ANSI10000040 V3 EN Figure 90: Example for Definite Time Delay stage1 operation 9.1.7.3 Blocking It is possible to block Two step undervoltage protection UV2PTUV (27) partially or completely, by binary input signals or by parameter settings, where: BLOCK: blocks all outputs...
  • Page 287: Design

    Section 9 1MRK 511 365-UUS A Voltage protection Disconnection Normal voltage Pickup1 Pickup2 tBlkUV1 < t1,t1Min IntBlkStVal1 tBlkUV2 < t2,t2Min IntBlkStVal2 Time Block step 1 Block step 2 en05000466_ansi.vsd ANSI05000466 V1 EN Figure 91: Blocking function 9.1.7.4 Design The voltage measuring elements continuously measure the three phase-to-neutral voltages or the three phase-to-phase voltages.
  • Page 288 Section 9 1MRK 511 365-UUS A Voltage protection Comparator PU_ST1_A VA < V1< Voltage Phase Phase 1 Selector PU_ST1_B OpMode1 Comparator Phase 2 1 out of 3 VB < V1< 2 out of 3 Pickup PU_ST1_C 3 out of 3 Phase 3 Comparator t1Reset...
  • Page 289: Technical Data

    Section 9 1MRK 511 365-UUS A Voltage protection 9.1.8 Technical data Table 155: UV2PTUV (27) technical data Function Range or value Accuracy VBase Trip voltage, low and high (1.0–100.0)% of ±0.5% of V step VBase Absolute hysteresis (0.0–50.0)% of ±0.5% of V VBase Internal blocking level, (1.0–50.0)% of...
  • Page 290: Functionality Ov2Ptov

    Section 9 1MRK 511 365-UUS A Voltage protection 9.2.2 Functionality OV2PTOV Overvoltages may occur in the power system during abnormal conditions such as sudden power loss, tap changer regulating failures, and open line ends on long lines. Two step overvoltage protection (OV2PTOV, 59) function can be used to detect open line ends, normally then combined with a directional reactive over-power function to supervise the system voltage.
  • Page 291: Settings

    Section 9 1MRK 511 365-UUS A Voltage protection Table 157: OV2PTOV (59) Output signals Name Type Description TRIP BOOLEAN Trip TRST1 BOOLEAN Common trip signal from step1 TRST1_A BOOLEAN Trip signal from step1 phase A TRST1_B BOOLEAN Trip signal from step1 phase B TRST1_C BOOLEAN Trip signal from step1 phase C...
  • Page 292 Section 9 1MRK 511 365-UUS A Voltage protection Name Values (Range) Unit Step Default Description t1Min 0.000 - 60.000 0.001 5.000 Minimum operate time for inverse curves for step 1 0.05 - 1.10 0.01 0.05 Time dial multiplier for the inverse time delay for step 1 HystAbs1 0.0 - 50.0...
  • Page 293: Monitored Data

    Section 9 1MRK 511 365-UUS A Voltage protection Name Values (Range) Unit Step Default Description tReset2 0.000 - 60.000 0.001 0.025 Reset time delay used in IEC Definite Time curve step 2 ResetTypeCrv2 Instantaneous Instantaneous Selection of Time Delay reset curve for step 2 Frozen timer Linearly decreased tIReset2...
  • Page 294: Measurement Principle

    Section 9 1MRK 511 365-UUS A Voltage protection OV2PTOV (59) can be set to PICKUP/TRIP, based on 1 out of 3, 2 out of 3 or 3 out of 3 of the measured voltages, being above the set point. If the voltage remains above the set value for a time period corresponding to the chosen time delay, the corresponding trip signal is issued.
  • Page 295: Time Delay

    Section 9 1MRK 511 365-UUS A Voltage protection 9.2.7.2 Time delay The time delay for the two steps can be either definite time delay (DT) or inverse time delay (TOV). For the inverse time delay four different modes are available: •...
  • Page 296 Section 9 1MRK 511 365-UUS A Voltage protection When the denominator in the expression is equal to zero the time delay will be infinity. There will be an undesired discontinuity. Therefore, a tuning parameter CrvSatn is set to compensate for this phenomenon. In the voltage interval Vpickup up to Vpickup · (1.0 + CrvSatn/100) the used voltage will be: Vpickup ·...
  • Page 297 Section 9 1MRK 511 365-UUS A Voltage protection TOV reset time is constant and does not depend on the voltage fluctuations during the drop-off period. However, there are three ways to reset the timer: either the timer is reset instantaneously, or the timer value is frozen during the reset time, or the timer value is linearly decreased during the reset time.
  • Page 298 Section 9 1MRK 511 365-UUS A Voltage protection tIReset1 Voltage tIReset1 PICKUP TRIP PICKUP HystAbs1 Pickup1 Measured Voltage Time PICKUP TRIP Time Integrator Frozen Timer Time Instantaneous Linearly decreased ANSI05000020-2-en.vsd ANSI05000020 V2 EN Figure 96: Voltage profile causing a reset of the PICKUP signal for step 1, and inverse time delay at different reset types Definite time delay When definite time delay is selected, the function will trip as shown in figure 97.
  • Page 299 Section 9 1MRK 511 365-UUS A Voltage protection PU_ST1 tReset1 a>b TRST1 Vpickup> Delay Delay ANSI10000100-2-en.vsd ANSI10000100 V2 EN Figure 97: Detailed logic diagram for step 1, definite time delay, DT operation Pickup1 PICKUP TRIP tReset1 ANSI10000037-2-en.vsd ANSI10000037 V2 EN Figure 98: Example for step 1, Definite Time Delay stage 1 reset Phasor measurement unit RES670 2.1 ANSI...
  • Page 300: Blocking

    Section 9 1MRK 511 365-UUS A Voltage protection Pickup1 PICKUP TRIP tReset1 ANSI10000038-2-en.vsd ANSI10000038 V2 EN Figure 99: Example for Definite Time Delay stage 1 operation 9.2.7.3 Blocking It is possible to block Two step overvoltage protection OV2PTOV, (59) partially or completely, by binary input signals where: BLOCK: blocks all outputs...
  • Page 301 Section 9 1MRK 511 365-UUS A Voltage protection Comparator PU_ST1_A VA > Phase A Voltage Phase Pickup 1 Selector PU_ST1_B Comparator OpMode1 Phase B VB > 1 out of 3 Pickup 1 Pickup 2 out of 3 PU_ ST1_C Phase C 3 out of 3 Comparator t1Reset...
  • Page 302: Technical Data

    Section 9 1MRK 511 365-UUS A Voltage protection 9.2.8 Technical data Table 162: OV2PTOV (59) technical data Function Range or value Accuracy VBase Trip voltage, step 1 (1.0-200.0)% of ±0.5% of V at V ≤ V and 2 ±0.5% of V at V > V Absolute hysteresis (0.0–50.0)% of VBase...
  • Page 303: Underfrequency Protection Saptuf (81)

    Section 10 1MRK 511 365-UUS A Frequency protection Section 10 Frequency protection 10.1 Underfrequency protection SAPTUF (81) 10.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Underfrequency protection SAPTUF f < SYMBOL-P V1 EN 10.1.2 Functionality Underfrequency occurs as a result of a lack of generation in the network.
  • Page 304: Signals

    Section 10 1MRK 511 365-UUS A Frequency protection 10.1.4 Signals Table 163: SAPTUF (81L) Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLKTRIP BOOLEAN Blocking operate output BLKREST BOOLEAN Blocking restore output Table 164:...
  • Page 305: Monitored Data

    Section 10 1MRK 511 365-UUS A Frequency protection Table 166: SAPTUF (81L) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 12 Selection of one of the Global Base Value groups 10.1.6 Monitored data Table 167: SAPTUF (81L) Monitored data Name Type...
  • Page 306: Time Delay

    Section 10 1MRK 511 365-UUS A Frequency protection 10.1.7.2 Time delay The time delay for underfrequency protection SAPTUF (81) can be either a settable definite time delay or a voltage magnitude dependent time delay, where the time delay depends on the voltage level; a high voltage level gives a longer time delay and a low voltage level causes a short time delay.
  • Page 307 Section 10 1MRK 511 365-UUS A Frequency protection Exponent é ù V VMin × t MaxTripDelay t MinTripDelay t MinTripDelay ê ú ë û VNom VMin (Equation 61) EQUATION1559 V1 EN where: is the voltage dependent time delay (at constant voltage), is the measured voltage Exponent is a setting,...
  • Page 308: Blocking

    Section 10 1MRK 511 365-UUS A Frequency protection 10.1.7.4 Blocking It is possible to block underfrequency protection SAPTUF (81) partially or completely, by binary input signals or by parameter settings, where: BLOCK: blocks all outputs BLKTRIP: blocks the TRIP output BLKREST: blocks the RESTORE output If the measured voltage level decreases below the setting of MinValFreqMeas in the...
  • Page 309: Overfrequency Protection Saptof (81)

    Section 10 1MRK 511 365-UUS A Frequency protection Block BLKDMAGN BLOCK Comparator V < IntBlockLevel Voltage Time integrator Pickup PICKUP TimerOperation Mode & PICKUP Selector Trip Frequency Comparator Output f < PuFrequency TimeDlyOperate Logic TRIP TimeDlyReset TRIP 100 ms Comparator RESTORE TimeDlyRestore f >...
  • Page 310: Functionality

    Section 10 1MRK 511 365-UUS A Frequency protection 10.2.2 Functionality Overfrequency protection function SAPTOF (81) is applicable in all situations, where reliable detection of high fundamental power system frequency is needed. Overfrequency occurs because of sudden load drops or shunt faults in the power network. Close to the generating plant, generator governor problems can also cause over frequency.
  • Page 311: Settings

    Section 10 1MRK 511 365-UUS A Frequency protection Table 169: SAPTOF (81H) Output signals Name Type Description TRIP BOOLEAN Common trip signal PICKUP BOOLEAN Common pickup signal BLKDMAGN BOOLEAN Measurement blocked due to low amplitude FREQ REAL Measured frequency 10.2.5 Settings Table 170: SAPTOF (81H) Group settings (basic)
  • Page 312: Measurement Principle

    Section 10 1MRK 511 365-UUS A Frequency protection 10.2.7.1 Measurement principle The fundamental frequency of the positive sequence voltage is measured continuously, and compared with the set value, PUFrequency. Overfrequency protection SAPTOF (81) is dependent on the voltage magnitude. If the voltage magnitude decreases below the setting MinValFreqMeas in the SMAI preprocessing function, which is discussed in the Basic IED Functions chapter and is set as a percentage of a global base voltage parameter VBase, SAPTOF (81) is blocked and the output BLKDMAGN is issued.
  • Page 313: Design

    Section 10 1MRK 511 365-UUS A Frequency protection 10.2.7.4 Design The frequency measuring element continuously measures the frequency of the positive sequence voltage and compares it to the setting PUFrequency. The frequency signal is filtered to avoid transients due to switchings and faults in the power system. The time integrator operates due to a definite delay time.
  • Page 314: Rate-Of-Change Frequency Protection Sapfrc (81)

    Section 10 1MRK 511 365-UUS A Frequency protection Function Range or value Accuracy Reset time, pickup at f +0.02 Hz Min. = 15 ms Max. = 30 ms to f -0.02 Hz Trip time, definite time function at (0.000-60.000)s ±0.2% ±100 ms -0.02 Hz to f +0.02 Hz whichever is greater...
  • Page 315: Function Block

    Section 10 1MRK 511 365-UUS A Frequency protection 10.3.3 Function block SAPFRC (81) V3P* TRIP BLOCK PICKUP BLKTRIP RESTORE BLKREST BLKDMAGN ANSI06000281-2-en.vsd ANSI06000281 V2 EN Figure 106: SAPFRC (81) function block 10.3.4 Signals Table 174: SAPFRC (81R) Input signals Name Type Default Description...
  • Page 316: Monitored Data

    Section 10 1MRK 511 365-UUS A Frequency protection 10.3.6 Monitored data Table 177: SAPFRC (81R) Monitored data Name Type Values (Range) Unit Description STARTDUR REAL Start duration in percents of the total operation time 10.3.7 Operation principle Rate-of-change frequency protection SAPFRC (81) is used to detect fast power system frequency changes at an early stage.
  • Page 317: Blocking

    Section 10 1MRK 511 365-UUS A Frequency protection Trip signal issuing requires that the rate-of-change of frequency condition continues for at least the user set time delay, tTrip. If the PICKUP condition, with respect to the measured frequency ceases during the delay time, and is not fulfilled again within a user defined reset time, tReset, the PICKUP output is reset, after that the defined reset time has elapsed.
  • Page 318: Technical Data

    Section 10 1MRK 511 365-UUS A Frequency protection BLOCK BLKTRIP BLKRESET BLOCK BLKDMAGN Voltage Comparator V < IntBlockLevel Pickup Rate-of-Change Time integrator & Comparator of Frequency Trip Definite Time Delay Output [PickupFreqGrad<0 PICKUP PICKUP Logic TimeDlyOperate df/dt < PickupFreqGrad] TimeDlyReset [PickupFreqGrad>0 TRIP df/dt >...
  • Page 319: Frequency Time Accumulation Protection Function Ftaqfvr (81A)

    Section 10 1MRK 511 365-UUS A Frequency protection 10.4 Frequency time accumulation protection function FTAQFVR (81A) 10.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/ identification identification IEEEidentification Frequency time accumulation protection FTAQFVR f<> 10.4.2 Functionality Frequency time accumulation protection FTAQFVR (81A) is based on measured system frequency and time counters.
  • Page 320: Signals

    Section 10 1MRK 511 365-UUS A Frequency protection 10.4.4 Signals Table 179: FTAQFVR (81A) Input signals Name Type Default Description GROUP Group signal for three phase current SIGNAL GROUP Group signal for three phase voltage SIGNAL BLOCK BOOLEAN Block of function CBCLOSE BOOLEAN Circuit breaker closed status input...
  • Page 321: Settings

    Section 10 1MRK 511 365-UUS A Frequency protection 10.4.5 Settings Table 181: FTAQFVR (81A) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable operation of the function Enabled tContinuous 0.0 - 6000.0 20.0 Continuous time limit for frequency band limits tAccLimit 10.0 - 90000.0 600.0...
  • Page 322 Section 10 1MRK 511 365-UUS A Frequency protection Frequency time accumulation protection function FTAQFVR (81A) is used to protect the turbine against an abnormal frequency operation. During the startup and shutdown of the turbine-generator set, FTAQFVR (81A) is blocked to avoid unnecessary accumulation of time or tripping of generator.
  • Page 323 Section 10 1MRK 511 365-UUS A Frequency protection Individual event time: The individual event time counter registers the time passing if the system frequency falls within the frequency band limits each time. It resets when the frequency comes out of the frequency band limits and also when the BLOCK binary input is activated and start from zero when a new start is activated.
  • Page 324 Section 10 1MRK 511 365-UUS A Frequency protection Comparator FreqHighLimit <= ERROR FreqLowLimit Then ERROR FREQ FREQ Comparator FREQOK FREQOK f <= FreqHighLimit f > FreqLowLimit VOLTOK VOLTOK Then PICKUP BFI_3P Accumulation time Comparator counter <= VHighLimit TRIPACC PICKUP Signal Routing Continuous time >= VLowLimit Based on...
  • Page 325 Section 10 1MRK 511 365-UUS A Frequency protection Table 184: FTAQFVR (81A) technical data Function Range or value Accuracy Trip value, frequency high limit (35.00 – 90.00) Hz ±2.0 mHz level at symmetrical three phase voltage Trip value, frequency low limit (30.00 –...
  • Page 327: General Current And Voltage Protection Cvgapc

    Section 11 1MRK 511 365-UUS A Multipurpose protection Section 11 Multipurpose protection 11.1 General current and voltage protection CVGAPC 11.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number General current and voltage protection CVGAPC 2(I>/U<) 11.1.2 Function block CVGAPC...
  • Page 328: Signals

    Section 11 1MRK 511 365-UUS A Multipurpose protection 11.1.3 Signals Table 185: CVGAPC Input signals Name Type Default Description GROUP Group signal for current input SIGNAL GROUP Group signal for voltage input SIGNAL BLOCK BOOLEAN Block of function BLKOC1 BOOLEAN Block of over current function OC1 BLKOC1TR BOOLEAN...
  • Page 329 Section 11 1MRK 511 365-UUS A Multipurpose protection Name Type Description TRUV1 BOOLEAN Trip signal from undervoltage function UV1 TRUV2 BOOLEAN Trip signal from undervoltage function UV2 PICKUP BOOLEAN Common pickup signal PU_OC1 BOOLEAN Pickup signal from overcurrent function OC1 PU_OC2 BOOLEAN Pickup signal from overcurrent function OC2...
  • Page 330: Settings

    Section 11 1MRK 511 365-UUS A Multipurpose protection 11.1.4 Settings Table 187: CVGAPC Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled CurrentInput Phase A MaxPh Select current signal which will be measured Phase B inside function Phase C...
  • Page 331 Section 11 1MRK 511 365-UUS A Multipurpose protection Name Values (Range) Unit Step Default Description LowVolt_VM 0.0 - 5.0 Below this level in % of VBase setting ActLowVolt takes over Operation_OC1 Disabled Disabled Disable/Enable Operation of OC1 Enabled PickupCurr_OC1 2.0 - 5000.0 120.0 Operate current level for OC1 in % of IBase CurveType_OC1...
  • Page 332 Section 11 1MRK 511 365-UUS A Multipurpose protection Name Values (Range) Unit Step Default Description Operation_OC2 Disabled Disabled Disable/Enable Operation od OC2 Enabled PickupCurr_OC2 2.0 - 5000.0 120.0 Operate current level for OC2 in % of IBase CurveType_OC2 ANSI Ext. inv. ANSI Def.
  • Page 333 Section 11 1MRK 511 365-UUS A Multipurpose protection Name Values (Range) Unit Step Default Description EnBlkLowI_UC1 Disabled Disabled Enable internal low current level blocking for Enabled BlkLowCurr_UC1 0 - 150 Internal low current blocking level for UC1 in % of IBase PickupCurr_UC1 2.0 - 150.0 70.0...
  • Page 334 Section 11 1MRK 511 365-UUS A Multipurpose protection Name Values (Range) Unit Step Default Description tMin_OV2 0.00 - 6000.00 0.01 0.05 Minimum operate time for Inverse-Time curves for OV2 TD_OV2 0.05 - 999.00 0.01 0.30 Time multiplier for the dependent time delay for Operation_UV1 Disabled Disabled...
  • Page 335 Section 11 1MRK 511 365-UUS A Multipurpose protection Table 188: CVGAPC Group settings (advanced) Name Values (Range) Unit Step Default Description MultPU_OC1 1.0 - 10.0 Multiplier for scaling the current setting value for OC1 ResCrvType_OC1 Instantaneous Instantaneous Selection of reset curve type for OC1 IEC Reset ANSI reset tResetDef_OC1...
  • Page 336 Section 11 1MRK 511 365-UUS A Multipurpose protection Name Values (Range) Unit Step Default Description ResCrvType_OV1 Instantaneous Instantaneous Selection of reset curve type for OV1 Frozen timer Linearly decreased tResetDef_OV1 0.00 - 6000.00 0.01 0.00 Reset time delay in sec for definite time use of tResetIDMT_OV1 0.00 - 6000.00 0.01...
  • Page 337: Monitored Data

    Section 11 1MRK 511 365-UUS A Multipurpose protection Name Values (Range) Unit Step Default Description C_UV1 0.000 - 1.000 0.001 1.000 Parameter C for customer programmable curve for UV1 D_UV1 0.000 - 10.000 0.001 0.000 Parameter D for customer programmable curve for UV1 P_UV1 0.001 - 10.000...
  • Page 338: Operation Principle

    Section 11 1MRK 511 365-UUS A Multipurpose protection Name Type Values (Range) Unit Description ICOSFI REAL Measured current multiplied with cos (Phi) VOLTAGE REAL Measured voltage value VIANGLE REAL Angle between voltage and current 11.1.6 Operation principle 11.1.6.1 Measured quantities within CVGAPC General current and voltage protection (CVGAPC) function is always connected to three- phase current and three-phase voltage input in the configuration tool, but it will always measure only one current and one voltage quantity selected by the end user in the setting...
  • Page 339 Section 11 1MRK 511 365-UUS A Multipurpose protection Set value for the parameter Comment CurrentInput PhaseB-PhaseC CVGAPC function will measure the current phasor internally calculated as the vector difference between the phase B current phasor and phase C current phasor (I PhaseC-PhaseA CVGAPC function will measure the current phasor internally calculated as the vector difference between the phase C current phasor and phase A current...
  • Page 340: Base Quantities For Cvgapc Function

    Section 11 1MRK 511 365-UUS A Multipurpose protection Set value for the parameter Comment VoltageInput PhaseB-PhaseC CVGAPC function will measure the voltage phasor internally calculated as the vector difference between the phase B voltage phasor and phase C voltage phasor (V PhaseC-PhaseA CVGAPC function will measure the voltage phasor internally calculated as the vector difference between the phase C voltage phasor and phase A voltage...
  • Page 341: Built-In Overcurrent Protection Steps

    Section 11 1MRK 511 365-UUS A Multipurpose protection Base current shall be entered as: rated phase current of the protected object in primary amperes, when the measured Current Quantity is selected from 1 to 9, as shown in table 191. rated phase current of the protected object in primary amperes multiplied by √3 (1.732*Iphase), when the measured Current Quantity is selected from 10 to 15, as shown in table 191.
  • Page 342 Section 11 1MRK 511 365-UUS A Multipurpose protection protection (CVGAPC) function can be made directional by enabling this built-in feature. In that case overcurrent protection step will only trip if the current flow is in accordance with the set direction (Forward, which means towards the protected object, or Reverse, which means from the protected object).
  • Page 343 Section 11 1MRK 511 365-UUS A Multipurpose protection V=-3V0 RCADir Ipickup I=3Io ROADir Operate region mta line en05000252_anis.vsd IEC05000252-ANIS V1 EN Figure 111: I & V directional operating principle for CVGAPC function where: RCADir is -75° ROADir is 50° The second principle, referred to as "IcosPhi&V" in the parameter setting tool, checks that: •...
  • Page 344 Section 11 1MRK 511 365-UUS A Multipurpose protection V=-3V0 RCADir Ipickup ROADir I=3Io Operate region mta line en05000253_ansi.vsd ANSI05000253 V1 EN Figure 112: CVGAPC, IcosPhi&V directional operating principle where: RCADir is -75° ROADir is 50° Note that it is possible to decide by a parameter setting how the directional feature shall behave when the magnitude of the measured voltage phasor falls below the pre-set value.
  • Page 345 Section 11 1MRK 511 365-UUS A Multipurpose protection OC1 Stage Pickup Level PickupCurr_OC1 VDepFact_OC1 * PickupCurr_OC1 VLowLimit_OC1 VHighLimit_OC1 Selected Voltage Magnitude en05000324_ansi.vsd ANSI05000324 V1 EN Figure 113: Example for OC1 step current pickup level variation as function of measured voltage magnitude in Slope mode of operation •...
  • Page 346: Built-In Undercurrent Protection Steps

    Section 11 1MRK 511 365-UUS A Multipurpose protection Current restraint feature The overcurrent protection step operation can be made dependent of a restraining current quantity (see table 193). Practically then the pickup level of the overcurrent step is not constant but instead increases with the increase in the magnitude of the restraining current. Measured IsetHigh IsetLow...
  • Page 347: Built-In Overvoltage Protection Steps

    Section 11 1MRK 511 365-UUS A Multipurpose protection than the set time delay the undercurrent step will set its trip signal to one. Reset of the pickup and trip signal can be instantaneous or time delay in accordance with the setting. 11.1.6.5 Built-in overvoltage protection steps Two overvoltage protection steps are available.
  • Page 348 Section 11 1MRK 511 365-UUS A Multipurpose protection CVGAPC function Current and voltage selection settings Selected current Selection of which current and voltage shall be given to Selected voltage the built-in protection elements Restraint current selection Selected restraint current Selection of restraint current ANSI05000169_2_en.vsd ANSI05000169 V2 EN Figure 116:...
  • Page 349 Section 11 1MRK 511 365-UUS A Multipurpose protection Selects one current from the three-phase input system (see table 191) for internally measured current. Selects one voltage from the three-phase input system (see table 192) for internally measured voltage. Selects one current from the three-phase input system (see table 193) for internally measured restraint current.
  • Page 350 Section 11 1MRK 511 365-UUS A Multipurpose protection CURRENT TRUC1 Harmonic restraint Selected current PU_UC2 TRUC2 Harmonic restraint PU_OC1 TROC1 Harmonic BLK2ND restraint Selected restraint current Current restraint DIROC1 Directionality Voltage control / restraint PU_OC2 TROC2 Harmonic restraint Current restraint VDIRLOW Directionality DIROC2...
  • Page 351 Section 11 1MRK 511 365-UUS A Multipurpose protection ANSI05000170 V1 EN Figure 117: CVGAPC function main logic diagram for built-in protection elements Logic in figure can be summarized as follows: The selected currents and voltage are given to built-in protection elements. Each protection element and step makes independent decision about status of its PICKUP and TRIP output signals.
  • Page 352 Section 11 1MRK 511 365-UUS A Multipurpose protection Bin input: BLKUC1TR Selected current TRUC1 b>a 0-DEF PickupCurr_UC1 Operation_UC1=On Bin input: BLKUC1 en05000750_ansi.vsd ANSI05000750 V1 EN Figure 119: Simplified internal logic diagram for built-in first undercurrent step that is, UC1 (step UC2 has the same internal logic) DEF time BLKTROV1...
  • Page 353: Technical Data

    Section 11 1MRK 511 365-UUS A Multipurpose protection DEF time BLKTRUV1 TRUV1 0-DEF selected Selected voltage b>a PU_UV1 PickupVolt_UV1 Inverse Operation_UV1=On Inverse time selected BLKUV1 en05000752_ansi.vsd ANSI05000752 V1 EN Figure 121: Simplified internal logic diagram for built-in first undervoltage step UV1 (step UV2 has the same internal logic) 11.1.7 Technical data...
  • Page 354 Section 11 1MRK 511 365-UUS A Multipurpose protection Function Range or value Accuracy Pickup time at 0 to 2 x I Min. = 15 ms Max. = 30 ms Reset time at 2 to 0 x I Min. = 15 ms Max.
  • Page 355 Section 11 1MRK 511 365-UUS A Multipurpose protection Function Range or value Accuracy Inverse time 4 curve types See table characteristics, see table Undervoltage: Inverse time 3 curve types See table characteristics, see table High and low voltage limit, (1.0 - 200.0)% of VBase ±1.0% of V at V ≤...
  • Page 357: Multipurpose Filter Smaihpac

    Section 12 1MRK 511 365-UUS A System protection and control Section 12 System protection and control 12.1 Multipurpose filter SMAIHPAC 12.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Multipurpose filter SMAIHPAC 12.1.2 Functionality The multi-purpose filter function block, SMAIHPAC, is arranged as a three-phase filter. It has very much the same user interface (e.g.
  • Page 358: Settings

    Section 12 1MRK 511 365-UUS A System protection and control Table 197: SMAIHPAC Output signals Name Type Description AI3P GROUP SIGNAL Analog input 3-phase group GROUP SIGNAL Analog input 1 GROUP SIGNAL Analog input 2 GROUP SIGNAL Analog input 3 GROUP SIGNAL Analog input 4 12.1.5...
  • Page 359 Section 12 1MRK 511 365-UUS A System protection and control numerical IEDs. This filter provides extremely good accuracy of measurement and excellent noise rejection, but at the same time it has much slower response time. It is capable to extract phasor (i.e. magnitude, phase angle and actual frequency) of any signal (e.g.
  • Page 360 Section 12 1MRK 511 365-UUS A System protection and control • Sensitive reverse power protection • Stator or rotor ground fault protection for special injection frequencies (e.g. 25Hz) • etc. The filter output can also be connected to the measurement function blocks such as CVMMXN (Measurements), CMMXU (Phase current measurement), VMMXU (Phase- phase voltage measurement), etc.
  • Page 361 Section 12 1MRK 511 365-UUS A System protection and control 1000 × 16.7 (Equation 62) EQUATION000028 V1 EN Thus based on the data from Table 199 the minimum acceptable value for this parameter would be “FilterLength = 0.2 s” but more accurate results will be obtained by using “FilterLength = 0.5 s”...
  • Page 362: Filter Calculation Example

    Section 12 1MRK 511 365-UUS A System protection and control ± (value given in Table 200 + one-half of the set FreqBandWidth value) Example if in 60Hz system the selected values are “FilterLength =1.0 s” and “FreqBandWidth = 5.0” the total filter pass band will be ±(3.6+5.0/2)= ± 6.1 Hz. It shall be noted that the phasor calculation is relatively computation demanding (required certain amount of the CPU processing time).
  • Page 363 Section 12 1MRK 511 365-UUS A System protection and control IEC13000178-2-en.vsd IEC13000178 V3 EN Figure 122: Example of filter calculation The data shown in the Figure comes from the comtrade file captured by the IED. The following traces are presented in this Figure. a) Waveforms of the stator three-phase currents given in primary kA.
  • Page 364 Section 12 1MRK 511 365-UUS A System protection and control With above given settings the sub-synchronous current magnitude and frequency are calculated approximately four times per second (that is, correct value is four times per 1024 ms). Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 365: Current Circuit Supervision (87)

    Section 13 1MRK 511 365-UUS A Secondary system supervision Section 13 Secondary system supervision 13.1 Current circuit supervision (87) 13.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Current circuit supervision CCSSPVC 13.1.2 Functionality Open or short circuited current transformer cores can cause unwanted operation of many protection functions such as differential, ground-fault current and negative-sequence current functions.
  • Page 366: Signals

    Section 13 1MRK 511 365-UUS A Secondary system supervision 13.1.4 Signals Table 201: CCSSPVC (87) Input signals Name Type Default Description GROUP Group signal for three phase current input SIGNAL IREF GROUP Residual reference current input SIGNAL BLOCK BOOLEAN Block of function Table 202: CCSSPVC (87) Output signals Name...
  • Page 367: Operation Principle

    Section 13 1MRK 511 365-UUS A Secondary system supervision 13.1.6 Operation principle Current circuit supervision CCSSPVC (87) compares the absolute value of the vectorial sum of the three phase currents |ΣIphase| and the numerical value of the residual current |Iref| from another current transformer set, see figure 124. The FAIL output will be set to a logical one when the following criteria are fulfilled: •...
  • Page 368: Technical Data

    Section 13 1MRK 511 365-UUS A Secondary system supervision | åI | - | I phase Slope = 1 Operation Slope = 0.8 area MinOp | åI | + | I phase 99000068.vsd IEC99000068 V1 EN Figure 125: Trip characteristics Due to the formulas for the axis compared, |SIphase | - |I ref | and |S I phase | + | I ref | respectively, the slope can not be above 2.
  • Page 369: Identification

    Section 13 1MRK 511 365-UUS A Secondary system supervision 13.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Fuse failure supervision FUFSPVC 13.2.2 Functionality The aim of the fuse failure supervision function FUFSPVC is to block voltage measuring functions at failures in the secondary circuits between the voltage transformer and the IED in order to avoid inadvertent operations that otherwise might occur.
  • Page 370: Signals

    Section 13 1MRK 511 365-UUS A Secondary system supervision 13.2.4 Signals Table 207: FUFSPVC Input signals Name Type Default Description GROUP Current connection SIGNAL GROUP Voltage connection SIGNAL BLOCK BOOLEAN Block of function BOOLEAN Active when circuit breaker is closed MCBOP BOOLEAN Active when external Miniature Circuit Breaker opens...
  • Page 371: Settings

    Section 13 1MRK 511 365-UUS A Secondary system supervision 13.2.5 Settings Table 209: FUFSPVC Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled OpModeSel Disabled V0I0 Operating mode selection V2I2 V0I0 V0I0 OR V2I2 V0I0 AND V2I2 OptimZsNs 3V0PU...
  • Page 372: Monitored Data

    Section 13 1MRK 511 365-UUS A Secondary system supervision 13.2.6 Monitored data Table 211: FUFSPVC Monitored data Name Type Values (Range) Unit Description REAL Magnitude of zero sequence current REAL Magnitude of negative sequence current REAL Magnitude of zero sequence voltage REAL Magnitude of negative...
  • Page 373 Section 13 1MRK 511 365-UUS A Secondary system supervision Sequence Detection 3I0PU CurrZeroSeq Zero sequence filter CurrNegSeq a>b 100 ms Negative sequence filter FuseFailDetZeroSeq a>b 100 ms 3I2PU FuseFailDetNegSeq 3V0PU VoltZeroSeq Zero sequence a>b filter VoltNegSeq Negative sequence a>b filter 3V2PU ANSI10000036-2-en.vsd ANSI10000036 V2 EN...
  • Page 374: Delta Current And Delta Voltage Detection

    Section 13 1MRK 511 365-UUS A Secondary system supervision operation of the fuse failure is blocked; a fixed drop-out timer prolongs the block for 100 ms. The aim is to increase the security against unwanted operations during the opening of the breaker, which might cause unbalance conditions for which the fuse failure might operate.
  • Page 375 Section 13 1MRK 511 365-UUS A Secondary system supervision • The magnitude of the phase-ground voltage has been above VPPU for more than 1.5 cycles (i.e. 30 ms in a 50 Hz system) • The magnitude of DV in three phases are higher than the corresponding setting DVPU •...
  • Page 376 Section 13 1MRK 511 365-UUS A Secondary system supervision DVDI Detection DVDI detection Phase 1 DI detection based on sample analysis DeltaIA DIPU DV detection based on sample analysis DVPU 1.5 cycle 20 ms DeltaVA a>b VPPU DeltaIB DVDI detection Phase 2 DeltaVB Same logic as for phase 1 DVDI detection Phase 3...
  • Page 377: Dead Line Detection

    Section 13 1MRK 511 365-UUS A Secondary system supervision intBlock PU_DI DeltaIA PU_DI_A 20 ms DeltaIB 20 ms PU_DI_B DeltaIC 20 ms PU_DI_C PU_DV DeltaVA PU_DV_A 20 ms DeltaVB 20 ms PU_DV_B DeltaVC 20 ms PU_DV_B ANSI12000165-2-en.vsd ANSI12000165 V2 EN Figure 129: Internal signals DeltaV or DeltaI and the corresponding output signals 13.2.7.3...
  • Page 378: Main Logic

    Section 13 1MRK 511 365-UUS A Secondary system supervision Dead Line Detection a<b AllCurrLow a<b a<b IDLDPU DeadLineDet1Ph a<b DLD1PH a<b DLD3PH a<b VDLDPU intBlock ANSI0000035-1-en.vsd ANSI0000035 V1 EN Figure 130: Simplified logic diagram for Dead Line detection part 13.2.7.4 Main logic A simplified diagram for the functionality is found in figure 131.
  • Page 379 Section 13 1MRK 511 365-UUS A Secondary system supervision The delta function can be activated by setting the parameter OpDVDI to Enabled. When selected it operates in parallel with the sequence based algorithms. As soon as any fuse failure situation is detected, signals FuseFailDetZeroSeq, FuseFailDetNegSeq or FuseFailDetDVDI, and the specific functionality is released, the function will activate the output signal BLKV.
  • Page 380 Section 13 1MRK 511 365-UUS A Secondary system supervision Fuse failure detection Main logic TEST TEST ACTIVE BlocFuse = Yes intBlock BLOCK BLKTRIP 20 ms 100 ms FusefailStarted All VL < VSealInPU SealIn = Enabled Any VL < VSealInPU FuseFailDetDUDI OpDVDI = Enabled FuseFailDetZeroSeq FuseFailDetNegSeq...
  • Page 381: Technical Data

    Section 13 1MRK 511 365-UUS A Secondary system supervision Figure 131: Simplified logic diagram for fuse failure supervision function, Main logic 13.2.8 Technical data Table 212: FUFSPVCtechnical data Function Range or value Accuracy Trip voltage, zero sequence (1-100)% of VBase ±0.5% of V Trip current, zero sequence (1–100)% of IBase...
  • Page 383: Logic Rotating Switch For Function Selection And Lhmi Presentation Slgapc

    Section 14 1MRK 511 365-UUS A Control Section 14 Control 14.1 Logic rotating switch for function selection and LHMI presentation SLGAPC 14.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Logic rotating switch for function SLGAPC selection and LHMI presentation 14.1.2...
  • Page 384: Function Block

    Section 14 1MRK 511 365-UUS A Control 14.1.3 Function block SLGAPC BLOCK ^P01 PSTO ^P02 ^P03 DOWN ^P04 ^P05 ^P06 ^P07 ^P08 ^P09 ^P10 ^P11 ^P12 ^P13 ^P14 ^P15 ^P16 ^P17 ^P18 ^P19 ^P20 ^P21 ^P22 ^P23 ^P24 ^P25 ^P26 ^P27 ^P28 ^P29...
  • Page 385 Section 14 1MRK 511 365-UUS A Control Table 214: SLGAPC Output signals Name Type Description BOOLEAN Selector switch position 1 BOOLEAN Selector switch position 2 BOOLEAN Selector switch position 3 BOOLEAN Selector switch position 4 BOOLEAN Selector switch position 5 BOOLEAN Selector switch position 6 BOOLEAN...
  • Page 386: Settings

    Section 14 1MRK 511 365-UUS A Control 14.1.5 Settings Table 215: SLGAPC Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled NrPos 2 - 32 Number of positions in the switch OutType Pulsed Steady Output type, steady or pulse...
  • Page 387: Graphical Display

    Section 14 1MRK 511 365-UUS A Control PSTO input. If any operation is allowed the signal INTONE from the Fixed signal function block can be connected. SLGAPC function block has also an integer value output, that generates the actual position number. The positions and the block names are fully settable by the user.
  • Page 388: Selector Mini Switch Vsgapc

    Section 14 1MRK 511 365-UUS A Control Control Control Single Line Diagram Commands Measurements Events Disturbance records Settings Diagnostics Test Reset Change to the "Switches" page Authorization of the SLD by left-right arrows. Select switch by up-down Language arrows ../Control/SLD/Switch Open Close ../Control/SLD/Switch...
  • Page 389: Functionality

    Section 14 1MRK 511 365-UUS A Control 14.2.2 Functionality The Selector mini switch VSGAPC function block is a multipurpose function used for a variety of applications, as a general purpose switch. VSGAPC can be controlled from the menu, from a symbol on the single line diagram (SLD) on the local HMI or from Binary inputs 14.2.3 Function block...
  • Page 390: Settings

    Section 14 1MRK 511 365-UUS A Control 14.2.5 Settings Table 219: VSGAPC Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled CtlModel Dir Norm Dir Norm Specifies the type for control model according SBO Enh to IEC 61850 Mode...
  • Page 391: Functionality

    Section 14 1MRK 511 365-UUS A Control IPOS1 IPOS2 Name of displayed string Default string value PosUndefined Position1 Position2 PosBadState 14.3 Generic communication function for Double Point indication DPGAPC 14.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Generic communication function for...
  • Page 392: Signals

    Section 14 1MRK 511 365-UUS A Control 14.3.4 Signals Table 220: DPGAPC Input signals Name Type Default Description OPEN BOOLEAN Open indication CLOSE BOOLEAN Close indication VALID BOOLEAN Valid indication Table 221: DPGAPC Output signals Name Type Description POSITION INTEGER Double point indication 14.3.5 Settings...
  • Page 393: Function Block

    Section 14 1MRK 511 365-UUS A Control or putting IED in "ChangeLock" state from remote. In this way, simple commands can be sent directly to the IED outputs, without confirmation. Confirmation (status) of the result of the commands is supposed to be achieved by other means, such as binary inputs and SPGAPC function blocks.
  • Page 394: Settings

    Section 14 1MRK 511 365-UUS A Control 14.4.5 Settings Table 224: SPC8GAPC Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled PulseMode1 Pulsed Pulsed Setting for pulsed/latched mode for output 1 Latched tPulse1 0.01 - 6000.00 0.01...
  • Page 395: Automationbits, Command Function For Dnp3.0 Autobits

    Section 14 1MRK 511 365-UUS A Control PSTO is the universal operator place selector for all control functions. Although, PSTO can be configured to use LOCAL or ALL operator places only, REMOTE operator place is used in SPC8GAPC function. 14.5 AutomationBits, command function for DNP3.0 AUTOBITS 14.5.1...
  • Page 396: Function Block

    Section 14 1MRK 511 365-UUS A Control 14.5.3 Function block AUTOBITS BLOCK ^CMDBIT1 PSTO ^CMDBIT2 ^CMDBIT3 ^CMDBIT4 ^CMDBIT5 ^CMDBIT6 ^CMDBIT7 ^CMDBIT8 ^CMDBIT9 ^CMDBIT10 ^CMDBIT11 ^CMDBIT12 ^CMDBIT13 ^CMDBIT14 ^CMDBIT15 ^CMDBIT16 ^CMDBIT17 ^CMDBIT18 ^CMDBIT19 ^CMDBIT20 ^CMDBIT21 ^CMDBIT22 ^CMDBIT23 ^CMDBIT24 ^CMDBIT25 ^CMDBIT26 ^CMDBIT27 ^CMDBIT28 ^CMDBIT29 ^CMDBIT30...
  • Page 397: Settings

    Section 14 1MRK 511 365-UUS A Control Name Type Description CMDBIT6 BOOLEAN Command out bit 6 CMDBIT7 BOOLEAN Command out bit 7 CMDBIT8 BOOLEAN Command out bit 8 CMDBIT9 BOOLEAN Command out bit 9 CMDBIT10 BOOLEAN Command out bit 10 CMDBIT11 BOOLEAN Command out bit 11...
  • Page 398 Section 14 1MRK 511 365-UUS A Control Table 228: DNPGEN Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled Table 229: CHSERRS485 Non group settings (basic) Name Values (Range) Unit Step Default Description BaudRate 300 Bd...
  • Page 399 Section 14 1MRK 511 365-UUS A Control Table 231: CH1TCP Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation mode TCP/IP UDP-Only TCPIPLisPort 1 - 65535 20000 TCP/IP listen port UDPPortAccData 1 - 65535 20000 UDP port to accept UDP datagrams from master...
  • Page 400 Section 14 1MRK 511 365-UUS A Control Table 235: CH3TCP Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation mode TCP/IP UDP-Only TCPIPLisPort 1 - 65535 20000 TCP/IP listen port UDPPortAccData 1 - 65535 20000 UDP port to accept UDP datagrams from master...
  • Page 401 Section 14 1MRK 511 365-UUS A Control Table 239: MSTSER Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled ChToAssociate RS485 RS485 Channel to associate to Optical SlaveAddress 0 - 65519 Slave address MasterAddres 0 - 65519 Master address...
  • Page 402 Section 14 1MRK 511 365-UUS A Control Table 240: MSTSER Non group settings (advanced) Name Values (Range) Unit Step Default Description ValMasterAddr Validate source (master) address AddrQueryEnbl Address query enable tApplConfTout 0.00 - 300.00 0.01 10.00 Application layer confim timeout ApplMultFrgRes Enable application for multiple fragment response...
  • Page 403 Section 14 1MRK 511 365-UUS A Control Name Values (Range) Unit Step Default Description TSyncReqAfTout Time synchronization request after timeout Averag3TimeReq Use average of 3 time requests PairedPoint Enable paired point tSelectTimeout 1.0 - 60.0 30.0 Select timeout Table 241: MST1TCP Non group settings (basic) Name Values (Range)
  • Page 404 Section 14 1MRK 511 365-UUS A Control Name Values (Range) Unit Step Default Description Obj22DefVar 1:BinCnt32EvWout 1:BinCnt32EvWou Object 22, default variation 2:BinCnt16EvWout 5:BinCnt32EvWith 6:BinCnt16EvWith Obj30DefVar 1:AI32Int 3:AI32IntWithoutF Object 30, default variation 2:AI16Int 3:AI32IntWithoutF 4:AI16IntWithoutF 5:AI32FltWithF 6:AI64FltWithF Obj32DefVar 1:AI32IntEvWoutF 1:AI32IntEvWoutF Object 32, default variation 2:AI16IntEvWoutF 3:AI32IntEvWithFT 4:AI16IntEvWithFT...
  • Page 405 Section 14 1MRK 511 365-UUS A Control Name Values (Range) Unit Step Default Description tVREvBufTout1 0.00 - 60.00 0.01 5.00 Unsolicited response class 1 event buffer timeout UREvCntThold2 1 - 100 Unsolicited response class 2 event count report treshold tVREvBufTout2 0.00 - 60.00 0.01 5.00...
  • Page 406 Section 14 1MRK 511 365-UUS A Control Name Values (Range) Unit Step Default Description Obj2DefVar 1:BIChWithoutTim 3:BIChWithRelTim Object 2, default variation 2:BIChWithTime 3:BIChWithRelTim Obj3DefVar 1:DIWithoutFlag 1:DIWithoutFlag Object 3, default variation 2:DIWithFlag Obj4DefVar 1:DIChWithoutTim 3:DIChWithRelTim Object 4, default variation 2:DIChWithTime 3:DIChWithRelTim Obj10DefVar 1:BO 2:BOStatus...
  • Page 407 Section 14 1MRK 511 365-UUS A Control Name Values (Range) Unit Step Default Description ConfMultFrag Confirm each multiple fragment UREnable Unsolicited response enabled UREvClassMask Disabled Disabled Unsolicited response, event class mask Class 1 Class 2 Class 1 and 2 Class 3 Class 1 and 3 Class 2 and 3 Class 1, 2 and 3...
  • Page 408 Section 14 1MRK 511 365-UUS A Control Table 245: MST3TCP Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled SlaveAddress 0 - 65519 Slave address MasterAddres 0 - 65519 Master address ValMasterAddr Validate source (master) address MasterIP-Addr 0 - 18...
  • Page 409 Section 14 1MRK 511 365-UUS A Control Name Values (Range) Unit Step Default Description Obj22DefVar 1:BinCnt32EvWout 1:BinCnt32EvWou Object 22, default variation 2:BinCnt16EvWout 5:BinCnt32EvWith 6:BinCnt16EvWith Obj30DefVar 1:AI32Int 3:AI32IntWithoutF Object 30, default variation 2:AI16Int 3:AI32IntWithoutF 4:AI16IntWithoutF 5:AI32FltWithF 6:AI64FltWithF Obj32DefVar 1:AI32IntEvWoutF 1:AI32IntEvWoutF Object 32, default variation 2:AI16IntEvWoutF 3:AI32IntEvWithFT 4:AI16IntEvWithFT...
  • Page 410 Section 14 1MRK 511 365-UUS A Control Name Values (Range) Unit Step Default Description tVREvBufTout1 0.00 - 60.00 0.01 5.00 Unsolicited response class 1 event buffer timeout UREvCntThold2 1 - 100 Unsolicited response class 2 event count report treshold tVREvBufTout2 0.00 - 60.00 0.01 5.00...
  • Page 411 Section 14 1MRK 511 365-UUS A Control Name Values (Range) Unit Step Default Description Obj2DefVar 1:BIChWithoutTim 3:BIChWithRelTim Object 2, default variation 2:BIChWithTime 3:BIChWithRelTim Obj3DefVar 1:DIWithoutFlag 1:DIWithoutFlag Object 3, default variation 2:DIWithFlag Obj4DefVar 1:DIChWithoutTim 3:DIChWithRelTim Object 4, default variation 2:DIChWithTime 3:DIChWithRelTim Obj10DefVar 1:BO 2:BOStatus...
  • Page 412 Section 14 1MRK 511 365-UUS A Control Name Values (Range) Unit Step Default Description ConfMultFrag Confirm each multiple fragment UREnable Unsolicited response enabled UREvClassMask Disabled Disabled Unsolicited response, event class mask Class 1 Class 2 Class 1 and 2 Class 3 Class 1 and 3 Class 2 and 3 Class 1, 2 and 3...
  • Page 413: Operation Principle

    Section 14 1MRK 511 365-UUS A Control 14.5.6 Operation principle AutomationBits function (AUTOBITS) has 32 individual outputs which each can be mapped as a Binary Output point in DNP3. The output is operated by a "Object 12" in DNP3. This object contains parameters for control-code, count, on-time and off-time. To operate an AUTOBITS output point, send a control-code of latch-On, latch-Off, pulse- On, pulse-Off, Trip or Close.
  • Page 414: Function Block

    Section 14 1MRK 511 365-UUS A Control 14.6.3 Function block SINGLECMD BLOCK ^OUT1 ^OUT2 ^OUT3 ^OUT4 ^OUT5 ^OUT6 ^OUT7 ^OUT8 ^OUT9 ^OUT10 ^OUT11 ^OUT12 ^OUT13 ^OUT14 ^OUT15 ^OUT16 IEC05000698-2-en.vsd IEC05000698 V3 EN Figure 138: SINGLECMD function block 14.6.4 Signals Table 249: SINGLECMD Input signals Name Type...
  • Page 415: Settings

    Section 14 1MRK 511 365-UUS A Control Name Type Description OUT14 BOOLEAN Single command output 14 OUT15 BOOLEAN Single command output 15 OUT16 BOOLEAN Single command output 16 14.6.5 Settings Table 251: SINGLECMD Non group settings (basic) Name Values (Range) Unit Step Default...
  • Page 417: Tripping Logic Smpptrc (94)

    Section 15 1MRK 511 365-UUS A Logic Section 15 Logic 15.1 Tripping logic SMPPTRC (94) 15.1.1 Operation principle The duration of a trip output signal from tripping logic common 3-phase output SMPPTRC (94) is settable (tTripMin). The pulse length should be long enough to secure the breaker opening.
  • Page 418: Logic Diagram

    Section 15 1MRK 511 365-UUS A Logic Additional logic, including a timer tWaitForPHS, secures a three-phase trip command for these protection functions in the absence of the required phase selection signals. The expanded SMPPTRC (94) function has three trip outputs TR_A, TR_B, TR_C (besides the trip output TRIP), one per phase, for connection to one or more of the IEDs binary outputs, as well as to other functions within the IED requiring these signals.
  • Page 419 Section 15 1MRK 511 365-UUS A Logic TRINP_3P TRINP_A PS_A TR_A TRINP_B TR_B PS_B TRINP_C TR_C PS_C - loop -loop 1PTRGF tWaitForPHS 1PTRZ ANSI10000056-3-en.vsd ANSI10000056 V3 EN Figure 141: Phase segregated front logic Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 420 Section 15 1MRK 511 365-UUS A Logic tTripMin tEvolvingFault tTripMin tEvolvingFault tTripMin tEvolvingFault ANSI05000519-3-en.vsdx ANSI05000519 V3 EN Figure 142: Additional logic for the 1ph/3ph operating mode Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 421 Section 15 1MRK 511 365-UUS A Logic BLOCK tTripMin tEvolvingFault tTripMin tEvolvingFault tTripMin tEvolvingFault ANSI05000520-4-en.vsdx ANSI05000520 V4 EN Figure 143: Additional logic for the 1ph/2ph/3ph operating mode Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 422: Trip Matrix Logic Tmagapc

    Section 15 1MRK 511 365-UUS A Logic ANSI05000521-3.vsd ANSI05000521 V3 EN Figure 144: Final tripping circuits 15.2 Trip matrix logic TMAGAPC 15.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Trip matrix logic TMAGAPC 15.2.2 Functionality The trip matrix logic TMAGAPC function is used to route trip signals and other logical output signals to different output contacts on the IED.
  • Page 423: Function Block

    Section 15 1MRK 511 365-UUS A Logic 15.2.3 Function block TMAGAPC BLOCK OUTPUT1 BLK1 OUTPUT2 BLK2 OUTPUT3 BLK3 INPUT1 INPUT2 INPUT3 INPUT4 INPUT5 INPUT6 INPUT7 INPUT8 INPUT9 INPUT10 INPUT11 INPUT12 INPUT13 INPUT14 INPUT15 INPUT16 INPUT17 INPUT18 INPUT19 INPUT20 INPUT21 INPUT22 INPUT23 INPUT24 INPUT25...
  • Page 424 Section 15 1MRK 511 365-UUS A Logic Name Type Default Description INPUT5 BOOLEAN Binary input 5 INPUT6 BOOLEAN Binary input 6 INPUT7 BOOLEAN Binary input 7 INPUT8 BOOLEAN Binary input 8 INPUT9 BOOLEAN Binary input 9 INPUT10 BOOLEAN Binary input 10 INPUT11 BOOLEAN Binary input 11...
  • Page 425: Settings

    Section 15 1MRK 511 365-UUS A Logic 15.2.5 Settings Table 254: TMAGAPC Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled PulseTime 0.050 - 60.000 0.001 0.150 Output pulse time OnDelay 0.000 - 60.000 0.001 0.000 Output on delay time...
  • Page 426: Technical Data

    Section 15 1MRK 511 365-UUS A Logic PulseTime ModeOutput1 INPUT 1 OUTPUT 1 0-OnDelay 0-OffDelay PulseTime ModeOutput2 INPUT 17 OUTPUT 2 0-OnDelay 0-OffDelay PulseTime ModeOutput3 OUTPUT 3 0-OnDelay 0-OffDelay ANSI10000055-3-en.vsd ANSI10000055 V3 EN Figure 146: Trip matrix internal logic Output signals from TMAGAPC are typically connected to other logic blocks or directly to output contacts in the IED.
  • Page 427: Logic For Group Alarm Almcalh

    Section 15 1MRK 511 365-UUS A Logic 15.3 Logic for group alarm ALMCALH 15.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Logic for group alarm ALMCALH 15.3.2 Functionality The group alarm logic function ALMCALH is used to route several alarm signals to a common indication, LED and/or contact, in the IED.
  • Page 428: Settings

    Section 15 1MRK 511 365-UUS A Logic Name Type Default Description INPUT6 BOOLEAN Binary input 6 INPUT7 BOOLEAN Binary input 7 INPUT8 BOOLEAN Binary input 8 INPUT9 BOOLEAN Binary input 9 INPUT10 BOOLEAN Binary input 10 INPUT11 BOOLEAN Binary input 11 INPUT12 BOOLEAN Binary input 12...
  • Page 429: Technical Data

    Section 15 1MRK 511 365-UUS A Logic Input 1 ALARM 200 ms ANSI13000191-1-en.vsd ANSI13000191 V1 EN Figure 147: Group alarm logic 15.3.7 Technical data Table 259: Number of ALMCALH instances Function Quantity with cycle time 3 ms 8 ms 100 ms ALMCALH 15.4 Logic for group warning WRNCALH...
  • Page 430: Function Block

    Section 15 1MRK 511 365-UUS A Logic 15.4.3 Function block WRNCALH BLOCK WARNING INPUT1 INPUT2 INPUT3 INPUT4 INPUT5 INPUT6 INPUT7 INPUT8 INPUT9 INPUT10 INPUT11 INPUT12 INPUT13 INPUT14 INPUT15 INPUT16 IEC13000182-1-en.vsd IEC13000182 V1 EN 15.4.4 Signals Table 260: WRNCALH Input signals Name Type Default...
  • Page 431: Settings

    Section 15 1MRK 511 365-UUS A Logic Table 261: WRNCALH Output signals Name Type Description WARNING BOOLEAN OR function betweeen inputs 1 to 16 15.4.5 Settings Table 262: WRNCALH Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled...
  • Page 432: Logic For Group Indication Indcalh

    Section 15 1MRK 511 365-UUS A Logic 15.5 Logic for group indication INDCALH 15.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Logic for group indication INDCALH 15.5.2 Functionality The group indication logic function INDCALH is used to route several indication signals to a common indication, LED and/or contact, in the IED.
  • Page 433: Settings

    Section 15 1MRK 511 365-UUS A Logic Name Type Default Description INPUT6 BOOLEAN Binary input 6 INPUT7 BOOLEAN Binary input 7 INPUT8 BOOLEAN Binary input 8 INPUT9 BOOLEAN Binary input 9 INPUT10 BOOLEAN Binary input 10 INPUT11 BOOLEAN Binary input 11 INPUT12 BOOLEAN Binary input 12...
  • Page 434: Technical Data

    Section 15 1MRK 511 365-UUS A Logic INPUT1 200 ms INPUT16 ANSI13000193-1-en.vsd ANSI13000193 V1 EN 15.5.7 Technical data Table 267: Number of INDCALH instances Function Quantity with cycle time 3 ms 8 ms 100 ms INDCALH 15.6 Basic configurable logic blocks The basic configurable logic blocks do not propagate the time stamp and quality of signals (have no suffix QT at the end of their function name).
  • Page 435: And Function Block And

    Section 15 1MRK 511 365-UUS A Logic • PULSETIMER function block can be used, for example, for pulse extensions or limiting of operation of outputs, settable pulse time. • RSMEMORY function block is a flip-flop that can reset or set an output from two inputs respectively.
  • Page 436: Signals

    Section 15 1MRK 511 365-UUS A Logic 15.6.1.2 Signals Table 268: AND Input signals Name Type Default Description INPUT1 BOOLEAN Input signal 1 INPUT2 BOOLEAN Input signal 2 INPUT3 BOOLEAN Input signal 3 INPUT4 BOOLEAN Input signal 4 Table 269: AND Output signals Name Type...
  • Page 437: Settings

    Section 15 1MRK 511 365-UUS A Logic Table 272: GATE Output signals Name Type Description BOOLEAN Output from gate 15.6.2.3 Settings Table 273: GATE Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled 15.6.2.4 Technical data Table 274:...
  • Page 438: Technical Data

    Section 15 1MRK 511 365-UUS A Logic 15.6.3.3 Technical data Table 277: Number of INV instances Logic block Quantity with cycle time 3 ms 8 ms 100 ms 15.6.4 Loop delay function block LLD The Logic loop delay function block (LLD) function is used to delay the output signal one execution cycle, that is, the cycle time of the function blocks used.
  • Page 439: Or Function Block Or

    Section 15 1MRK 511 365-UUS A Logic 15.6.5 OR function block OR The OR function is used to form general combinatory expressions with boolean variables. The OR function block has up to six inputs and two outputs. One of the outputs is inverted. 15.6.5.1 Function block INPUT1...
  • Page 440: Pulse Timer Function Block Pulsetimer

    Section 15 1MRK 511 365-UUS A Logic 15.6.6 Pulse timer function block PULSETIMER The pulse (PULSETIMER) function can be used, for example, for pulse extensions or limiting the operation time of outputs. The PULSETIMER has a settable length. When the input is 1, the output will be 1 for the time set by the time delay parameter t.
  • Page 441: Reset-Set With Memory Function Block Rsmemory

    Section 15 1MRK 511 365-UUS A Logic 15.6.7 Reset-set with memory function block RSMEMORY The Reset-set with memory function block (RSMEMORY) is a flip-flop with memory that can reset or set an output from two inputs respectively. Each RSMEMORY function block has two outputs, where one is inverted.
  • Page 442: Settings

    Section 15 1MRK 511 365-UUS A Logic 15.6.7.3 Settings Table 291: RSMEMORY Group settings (basic) Name Values (Range) Unit Step Default Description Memory Disabled Enabled Operating mode of the memory function Enabled 15.6.7.4 Technical data Table 292: Number of RSMEMORY instances Logic block Quantity with cycle time 3 ms...
  • Page 443: Signals

    Section 15 1MRK 511 365-UUS A Logic 15.6.8.2 Signals Table 294: SRMEMORY Input signals Name Type Default Description BOOLEAN Input signal to set RESET BOOLEAN Input signal to reset Table 295: SRMEMORY Output signals Name Type Description BOOLEAN Output signal NOUT BOOLEAN Inverted output signal...
  • Page 444: Function Block

    Section 15 1MRK 511 365-UUS A Logic Input tdelay tdelay IEC08000289-2-en.vsd IEC08000289 V2 EN Figure 156: TIMERSET status diagram 15.6.9.1 Function block TIMERSET INPUT IEC04000411-2-en.vsd IEC04000411 V2 EN Figure 157: TIMERSET function block 15.6.9.2 Signals Table 298: TIMERSET Input signals Name Type Default...
  • Page 445: Settings

    Section 15 1MRK 511 365-UUS A Logic 15.6.9.3 Settings Table 300: TIMERSET Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled 0.000 - 90000.000 0.001 0.000 Delay for settable timer n 15.6.9.4 Technical data Table 301: Number of TIMERSET instances Logic block...
  • Page 446: Signals

    Section 15 1MRK 511 365-UUS A Logic 15.6.10.2 Signals Table 303: XOR Input signals Name Type Default Description INPUT1 BOOLEAN Input 1 to XOR gate INPUT2 BOOLEAN Input 2 to XOR gate Table 304: XOR Output signals Name Type Description BOOLEAN Output from XOR gate NOUT...
  • Page 447 Section 15 1MRK 511 365-UUS A Logic input is copied to TIME output. The quality bits in the common part and the indication part of inputs signal are copied to the corresponding quality output. • INVALIDQT function which sets quality invalid of outputs according to a "valid" input.
  • Page 448: Andqt Function Block

    Section 15 1MRK 511 365-UUS A Logic 15.7.1 ANDQT function block The ANDQT function is used to form general combinatory expressions with boolean variables. The ANDQT function block has four inputs and two outputs. It can propagate the quality, value and timestamps of the signals via IEC61850. 15.7.1.1 Function block ANDQT...
  • Page 449: Single Point Indication Related Signals Combining Function Block Indcombspqt

    Section 15 1MRK 511 365-UUS A Logic 15.7.2 Single point indication related signals combining function block INDCOMBSPQT The value of single point input (SP_IN) is copied to the value part of the SP_OUT output. The TIME input is copied to the time part of the SP_OUT output. State input bits are copied to the corresponding state part of the SP_OUT output.
  • Page 450: Technical Data

    Section 15 1MRK 511 365-UUS A Logic 15.7.2.3 Technical data Table 311: Number of INDCOMBSPQT instances Logic block Quantity with cycle time 3 ms 8 ms 100 ms INDCOMBSPQT 15.7.3 Single point input signal attributes converting function block INDEXTSPQT The value part of the single point input signal SI_IN is copied to SI_OUT output. The time part of single point input is copied to the TIME output.
  • Page 451: Technical Data

    Section 15 1MRK 511 365-UUS A Logic Table 313: INDEXTSPQT Output signals Name Type Description SI_OUT BOOLEAN Single indication TIME GROUP SIGNAL Timestamp of input BLOCKED BOOLEAN Blocked for update SUBST BOOLEAN Substituted INVALID BOOLEAN Invalid value TEST BOOLEAN Testmode 15.7.3.3 Technical data Table 314:...
  • Page 452: Function Block

    Section 15 1MRK 511 365-UUS A Logic 15.7.4.1 Function block INVALIDQT INPUT1 OUTPUT1 INPUT2 OUTPUT2 INPUT3 OUTPUT3 INPUT4 OUTPUT4 INPUT5 OUTPUT5 INPUT6 OUTPUT6 INPUT7 OUTPUT7 INPUT8 OUTPUT8 INPUT9 OUTPUT9 INPUT10 OUTPUT10 INPUT11 OUTPUT11 INPUT12 OUTPUT12 INPUT13 OUTPUT13 INPUT14 OUTPUT14 INPUT15 OUTPUT15 INPUT16 OUTPUT16...
  • Page 453: Technical Data

    Section 15 1MRK 511 365-UUS A Logic Table 316: INVALIDQT Output signals Name Type Description OUTPUT1 BOOLEAN Indication output 1 OUTPUT2 BOOLEAN Indication output 2 OUTPUT3 BOOLEAN Indication output 3 OUTPUT4 BOOLEAN Indication output 4 OUTPUT5 BOOLEAN Indication output 5 OUTPUT6 BOOLEAN Indication output 6...
  • Page 454: Signals

    Section 15 1MRK 511 365-UUS A Logic 15.7.5.2 Signals Table 318: INVERTERQT Input signals Name Type Default Description INPUT BOOLEAN Input signal Table 319: INVERTERQT Output signals Name Type Description BOOLEAN Output signal 15.7.5.3 Technical data Table 320: Number of INVERTERQT instances Logic block Quantity with cycle time 3 ms...
  • Page 455: Technical Data

    Section 15 1MRK 511 365-UUS A Logic Table 321: ORQT Input signals Name Type Default Description INPUT1 BOOLEAN Input signal 1 INPUT2 BOOLEAN Input signal 2 INPUT3 BOOLEAN Input signal 3 INPUT4 BOOLEAN Input signal 4 INPUT5 BOOLEAN Input signal 5 INPUT6 BOOLEAN Input signal 6...
  • Page 456: Function Block

    Section 15 1MRK 511 365-UUS A Logic 15.7.7.1 Function block PULSETIMERQT INPUT IEC15000145.vsd IEC15000145 V1 EN Figure 165: PULSETIMERQT function block 15.7.7.2 Signals Table 324: PULSETIMERQT Input signals Name Type Default Description INPUT BOOLEAN Input signal Table 325: PULSETIMERQT Output signals Name Type Description...
  • Page 457: Function Block

    Section 15 1MRK 511 365-UUS A Logic the flip-flop resets or returns to the state it had before the power interruption. For a Reset- Set flip-flop, the RESET input has higher priority than the SET input. RSMEMORYQT can propagate the quality, the value and the time stamps of the signals via IEC61850.
  • Page 458: Settings

    Section 15 1MRK 511 365-UUS A Logic 15.7.8.3 Settings Table 331: RSMEMORYQT Group settings (basic) Name Values (Range) Unit Step Default Description Memory Disabled Enabled Operating mode of the memory function Enabled 15.7.8.4 Technical data Table 332: Number of RSMEMORYQT instances Logic block Quantity with cycle time 3 ms...
  • Page 459: Function Block

    Section 15 1MRK 511 365-UUS A Logic 15.7.9.1 Function block SRMEMORYQT RESET NOUT IEC14000070-1-en.vsd IEC14000070 V1 EN Figure 167: SRMEMORYQT function block 15.7.9.2 Signals Table 334: SRMEMORYQT Input signals Name Type Default Description BOOLEAN Input signal to set RESET BOOLEAN Input signal to reset Table 335: SRMEMORYQT Output signals...
  • Page 460: Function Block

    Section 15 1MRK 511 365-UUS A Logic The Settable timer function block (TIMERSETQT) has two outputs for delay of the input signal at pick-up and drop-out. The timer has a settable time delay (t). It also has an Operation setting On/Off that controls the operation of the timer. When the output changes value, the timestamp of the output signal is updated.
  • Page 461: Technical Data

    Section 15 1MRK 511 365-UUS A Logic 15.7.10.4 Technical data Table 341: Number of TIMERSETQT instances Logic block Quantity with cycle time Range or Value Accuracy 3 ms 8 ms 100 ms TIMERSETQT (0.000–90000.000) s ±0.5% ±10 ms 15.7.11 Exclusive OR function block XORQT The exclusive OR function (XORQT) function is used to generate combinatory expressions with boolean variables.
  • Page 462: Technical Data

    Section 15 1MRK 511 365-UUS A Logic Table 344: XORQT Output signals Name Type Description BOOLEAN Output signal NOUT BOOLEAN Inverted output signal 15.7.11.3 Technical data Table 345: Number of XORQT instances Logic block Quantity with cycle time 3 ms 8 ms 100 ms XORQT...
  • Page 463: Fixed Signals Fxdsign

    Section 15 1MRK 511 365-UUS A Logic 15.9 Fixed signals FXDSIGN 15.9.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Fixed signals FXDSIGN 15.9.2 Functionality The Fixed signals function FXDSIGN generates nine pre-set (fixed) signals that can be used in the configuration of an IED, either for forcing the unused inputs in other function blocks to a certain level/value, or for creating certain logic.
  • Page 464: Settings

    Section 15 1MRK 511 365-UUS A Logic Name Type Description REALZERO REAL Real signal fixed zero STRNULL STRING String signal with no characters ZEROSMPL GROUP SIGNAL Channel id for zero sample GRP_OFF GROUP SIGNAL Group signal fixed off 15.9.5 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600).
  • Page 465: Function Block

    Section 15 1MRK 511 365-UUS A Logic 15.10.2 Function block B16I BLOCK IN10 IN11 IN12 IN13 IN14 IN15 IN16 IEC07000128-2-en.vsd IEC07000128 V2 EN Figure 171: B16I function block 15.10.3 Signals Table 348: B16I Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN...
  • Page 466: Monitored Data

    Section 15 1MRK 511 365-UUS A Logic Table 349: B16I Output signals Name Type Description INTEGER Output value 15.10.4 Monitored data Table 350: B16I Monitored data Name Type Values (Range) Unit Description INTEGER Output value 15.10.5 Settings The function does not have any parameters available in the local HMI or PCM600. 15.10.6 Operation principle The Boolean 16 to integer conversion function (B16I) will transfer a combination of up to...
  • Page 467: Technical Data

    Section 15 1MRK 511 365-UUS A Logic Name of input Type Default Description Value when Value when activated deactivated BOOLEAN Input 8 BOOLEAN Input 9 IN10 BOOLEAN Input 10 IN11 BOOLEAN Input 11 1024 IN12 BOOLEAN Input 12 2048 IN13 BOOLEAN Input 13 4096...
  • Page 468: Functionality

    Section 15 1MRK 511 365-UUS A Logic 15.11.2 Functionality Boolean 16 to integer conversion with logic node representation function BTIGAPC is used to transform a set of 16 binary (logical) signals into an integer. The block input will freeze the output at the last value. BTIGAPC can receive remote values via IEC 61850 depending on the operator position input (PSTO).
  • Page 469: Settings

    Section 15 1MRK 511 365-UUS A Logic Name Type Default Description IN10 BOOLEAN Input 10 IN11 BOOLEAN Input 11 IN12 BOOLEAN Input 12 IN13 BOOLEAN Input 13 IN14 BOOLEAN Input 14 IN15 BOOLEAN Input 15 IN16 BOOLEAN Input 16 Table 353: BTIGAPC Output signals Name Type...
  • Page 470: Technical Data

    Section 15 1MRK 511 365-UUS A Logic The sum of the value on each INx corresponds to the integer presented on the output OUT on the function block BTIGAPC. Name of input Type Default Description Value when Value when activated deactivated BOOLEAN Input 1...
  • Page 471: Integer To Boolean 16 Conversion Ib16

    Section 15 1MRK 511 365-UUS A Logic 15.12 Integer to boolean 16 conversion IB16 15.12.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Integer to boolean 16 conversion IB16 15.12.2 Functionality Integer to boolean 16 conversion function IB16 is used to transform an integer into a set of 16 binary (logical) signals.
  • Page 472: Setting Parameters

    Section 15 1MRK 511 365-UUS A Logic Table 357: IB16 Output signals Name Type Description OUT1 BOOLEAN Output 1 OUT2 BOOLEAN Output 2 OUT3 BOOLEAN Output 3 OUT4 BOOLEAN Output 4 OUT5 BOOLEAN Output 5 OUT6 BOOLEAN Output 6 OUT7 BOOLEAN Output 7 OUT8...
  • Page 473 Section 15 1MRK 511 365-UUS A Logic The Integer to Boolean 16 conversion function (IB16) will transfer an integer with a value between 0 to 65535 connected to the input INP to a combination of activated outputs OUTx where 1≤x≤16. The sum of the values of all OUTx will then be equal to the integer on input INP.
  • Page 474: Technical Data

    Section 15 1MRK 511 365-UUS A Logic 15.12.7 Technical data Table 358: Number of IB16 instances Function Quantity with cycle time 3 ms 8 ms 100 ms IB16 15.13 Integer to Boolean 16 conversion with logic node representation ITBGAPC 15.13.1 Identification Function description IEC 61850...
  • Page 475: Function Block

    Section 15 1MRK 511 365-UUS A Logic 15.13.3 Function block ITBGAPC BLOCK OUT1 PSTO OUT2 OUT3 OUT4 OUT5 OUT6 OUT7 OUT8 OUT9 OUT10 OUT11 OUT12 OUT13 OUT14 OUT15 OUT16 IEC14000012-1-en.vsd IEC14000012 V1 EN Figure 174: ITBGAPC function block 15.13.4 Signals Table 359: ITBGAPC Input signals Name...
  • Page 476: Settings

    Section 15 1MRK 511 365-UUS A Logic Name Type Description OUT14 BOOLEAN Output 14 OUT15 BOOLEAN Output 15 OUT16 BOOLEAN Output 16 15.13.5 Settings This function does not have any setting parameters. 15.13.6 Operation principle An example is used to explain the principle of operation: With integer 15 sent to and received by the ITBGAPC function on the IEC61850 the OUTx changes from 0 to 1 on each of the OUT1;...
  • Page 477: Technical Data

    Section 15 1MRK 511 365-UUS A Logic Name of OUTx Type Description Value when Value when activated deactivated OUT4 BOOLEAN Output 4 OUT5 BOOLEAN Output 5 OUT6 BOOLEAN Output 6 OUT7 BOOLEAN Output 7 OUT8 BOOLEAN Output 8 OUT9 BOOLEAN Output 9 OUT10 BOOLEAN...
  • Page 478: Elapsed Time Integrator With Limit Transgression And Overflow Supervision Teigapc

    Section 15 1MRK 511 365-UUS A Logic 15.14 Elapsed time integrator with limit transgression and overflow supervision TEIGAPC 15.14.1 Identification Function Description IEC 61850 IEC 60617 ANSI/IEEE C37.2 device identification identification number Elapsed time integrator TEIGAPC 15.14.2 Functionality Elapsed Time Integrator (TEIGAPC) function is a function that accumulates the elapsed time when a given binary signal has been high, see also Figure 175.
  • Page 479: Function Block

    Section 15 1MRK 511 365-UUS A Logic 15.14.3 Function block TEIGAPC BLOCK WARNING ALARM RESET OVERFLOW ACCTIME IEC14000014-1-en.vsd IEC14000014 V1 EN Figure 176: TEIGAPC function block 15.14.4 Signals Table 363: TEIGAPC Input signals Name Type Default Description BLOCK BOOLEAN Freeze the integration and block the other outputs BOOLEAN The input signal that is used to measure the elapsed time, when its value is high...
  • Page 480: Operation Principle

    Section 15 1MRK 511 365-UUS A Logic 15.14.6 Operation principle The elapsed time integrator (TEIGAPC) provides • time integration, accumulating the elapsed time when a given binary signal has been high • blocking and reset of the total integrated time •...
  • Page 481: Operation Accuracy

    Section 15 1MRK 511 365-UUS A Logic • unconditionally on the input IN value • reset the value of the nonvolatile memory to zero • BLOCK: Freeze the integration and block/reset the other outputs • unconditionally on the signal value •...
  • Page 482: Technical Data

    Section 15 1MRK 511 365-UUS A Logic 15.14.7 Technical data Table 366: TEIGAPC Technical data Function Cycle time (ms) Range or value Accuracy Elapsed time integration 0 ~ 999999.9 s ±0.2% or ±20 ms whichever is greater 0 ~ 999999.9 s ±0.2% or ±100 ms whichever is greater 0 ~ 999999.9 s...
  • Page 483: Signals

    Section 15 1MRK 511 365-UUS A Logic 15.15.4 Signals Table 368: INTCOMP Input signals Name Type Default Description INPUT INTEGER Input value to be compared with reference value INTEGER Reference value to be compared with input value Table 369: INTCOMP Output signals Name Type Description...
  • Page 484: Technical Data

    Section 15 1MRK 511 365-UUS A Logic The function has three state outputs high, low and equal to condition. It will check the following condition and give corresponding outputs. • If the input is above the reference value then INHIGH will set •...
  • Page 485: Functionality

    Section 15 1MRK 511 365-UUS A Logic 15.16.2 Functionality The function gives the possibility to monitor the level of real value signals in the system relative to each other or to a fixed value. It is a basic arithmetic function that can be used for monitoring, supervision, interlocking and other logics.
  • Page 486: Operation Principle

    Section 15 1MRK 511 365-UUS A Logic Name Values (Range) Unit Step Default Description SetValPrefix milli unit Multiplication factor for SetValue unit kilo Mega Giga EqualBandHigh 0.10 - 10.00 0.01 0.50 Equal band high limit in % of reference value EqualBandLow 0.10 - 10.00 0.01...
  • Page 487 Section 15 1MRK 511 365-UUS A Logic EnaAbs INPUT High Comparator INHIGH EqualBandHigh INEQUAL RefSource SetValue comparator INLOW RefPrefix EqualBandLow IEC15000130-1-en.vsdx IEC15000130 V1 EN Figure 179: Logic diagram for REALCOMP This function has two settings EqualBandHigh and EqualBandLow to provide margins from reference value for equal to condition.
  • Page 488: Technical Data

    Section 15 1MRK 511 365-UUS A Logic When EnaAbs is set as absolute comparison and SetValue is set less than 0.2% of the set unit then INLOW output will never pickups. During the above mentioned condition, due to marginal value for avoiding oscillations of function outputs, the INLOW output will never set.
  • Page 489: Measurements

    Section 16 1MRK 511 365-UUS A Monitoring Section 16 Monitoring 16.1 Measurements 16.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Measurements CVMMXN P, Q, S, I, U, f SYMBOL-RR V1 EN Phase current measurement CMMXU SYMBOL-SS V1 EN Phase-phase voltage measurement...
  • Page 490: Functionality

    Section 16 1MRK 511 365-UUS A Monitoring 16.1.2 Functionality Measurement functions are used for power system measurement, supervision and reporting to the local HMI, monitoring tool within PCM600 or to station level for example, via IEC 61850. The possibility to continuously monitor measured values of active power, reactive power, currents, voltages, frequency, power factor etc.
  • Page 491: Function Block

    Section 16 1MRK 511 365-UUS A Monitoring The CVMMXN function calculates three-phase power quantities by using fundamental frequency phasors (DFT values) of the measured current respectively voltage signals. The measured power quantities are available either, as instantaneously calculated quantities or, averaged values over a period of time (low pass filtered) depending on the selected settings.
  • Page 492 Section 16 1MRK 511 365-UUS A Monitoring CMMXU I3P* IA_RANGE IA_ANGL IB_RANGE IB_ANGL IC_RANGE IC_ANGL ANSI05000699-2-en.vsd ANSI05000699 V2 EN Figure 182: CMMXU function block VMMXU V3P* V_AB VAB_RANG VAB_ANGL V_BC VBC_RANG VBC_ANGL V_CA VCA_RANG VCA_ANGL ANSI05000701-2-en.vsd ANSI05000701 V2 EN Figure 183: VMMXU function block CMSQI I3P*...
  • Page 493: Signals

    Section 16 1MRK 511 365-UUS A Monitoring VNMMXU V3P* VA_RANGE VA_ANGL VB_RANGE VB_ANGL VC_RANGE VC_ANGL ANSI09000850-1-en.vsd ANSI09000850 V1 EN Figure 186: VNMMXU function block 16.1.4 Signals Table 377: CVMMXN Input signals Name Type Default Description GROUP Group signal for current input SIGNAL GROUP Group signal for voltage input...
  • Page 494 Section 16 1MRK 511 365-UUS A Monitoring Table 379: CMMXU Input signals Name Type Default Description GROUP Group signal for current input SIGNAL Table 380: CMMXU Output signals Name Type Description REAL Phase A current magnitude of reported value IA_RANGE INTEGER Phase A current magnitude range IA_ANGL...
  • Page 495 Section 16 1MRK 511 365-UUS A Monitoring Table 383: CMSQI Input signals Name Type Default Description GROUP Group connection abstract block 3 SIGNAL Table 384: CMSQI Output signals Name Type Description REAL 3I0 magnitude of reported value 3I0RANG INTEGER 3I0 Magnitude range 3I0ANGL REAL 3I0 Angle, magnitude of reported value...
  • Page 496: Settings

    Section 16 1MRK 511 365-UUS A Monitoring Table 387: VNMMXU Input signals Name Type Default Description GROUP Group signal for voltage input SIGNAL Table 388: VNMMXU Output signals Name Type Description REAL VA Amplitude, magnitude of reported value VA_RANGE INTEGER VAAmplitude range VA_ANGL REAL...
  • Page 497 Section 16 1MRK 511 365-UUS A Monitoring Table 389: CVMMXN Non group settings (basic) Name Values (Range) Unit Step Default Description SLowLim 0.0 - 2000.0 80.0 Low limit in % of SBase SLowLowLim 0.0 - 2000.0 60.0 Low Low limit in % of SBase SMin 0.0 - 2000.0 50.0...
  • Page 498 Section 16 1MRK 511 365-UUS A Monitoring Name Values (Range) Unit Step Default Description Mode A, B, C A, B, C Selection of measured current and voltage Arone Pos Seq PowMagFact 0.000 - 6.000 0.001 1.000 Magnitude factor to scale power calculations PowAngComp -180.0 - 180.0 Angle compensation for phase shift between...
  • Page 499 Section 16 1MRK 511 365-UUS A Monitoring Name Values (Range) Unit Step Default Description PFDbRepInt 1 - 300 Type Cycl: Report interval (s), Db: In % of range, Int Db: In %s PFZeroDb 0 - 100000 Zero point clamping in 0.001% of range PFHiHiLim -1.000 - 1.000 0.001...
  • Page 500 Section 16 1MRK 511 365-UUS A Monitoring Name Values (Range) Unit Step Default Description VMagComp30 -10.000 - 10.000 0.001 0.000 Magnitude factor to calibrate voltage at 30% of VMagComp100 -10.000 - 10.000 0.001 0.000 Magnitude factor to calibrate voltage at 100% of Vn IMagComp5 -10.000 - 10.000...
  • Page 501 Section 16 1MRK 511 365-UUS A Monitoring Table 392: CMMXU Non group settings (advanced) Name Values (Range) Unit Step Default Description IA_ZeroDb 0 - 100000 Zero point clamping IA_HiHiLim 0.0 - 500.0 150.0 High High limit in % of IBase IA_HiLim 0.0 - 500.0 120.0...
  • Page 502 Section 16 1MRK 511 365-UUS A Monitoring Table 393: VMMXU Non group settings (basic) Name Values (Range) Unit Step Default Description VAB_DbRepInt 1 - 300 Type Cycl: Report interval (s), Db: In % of range, Int Db: In %s Operation Disabled Disabled Disbled/Enabled operation...
  • Page 503 Section 16 1MRK 511 365-UUS A Monitoring Name Values (Range) Unit Step Default Description VAB_Min 0.0 - 200.0 50.0 Minimum value in in % of VBase VAB_LimHys 0.000 - 100.000 0.001 5.000 Hysteresis value in % of range and is common for all limits VBC_HiHiLim 0.0 - 200.0...
  • Page 504 Section 16 1MRK 511 365-UUS A Monitoring Name Values (Range) Unit Step Default Description 3I0AngRepTyp Cyclic Cyclic Reporting type Dead band Int deadband I1DbRepInt 1 - 300 Type Cycl: Report interval (s), Db: In % of range, Int Db: In %s I1ZeroDb 0 - 100000 Zero point clamping...
  • Page 505 Section 16 1MRK 511 365-UUS A Monitoring Name Values (Range) Unit Step Default Description I1HiHiLim 0.0 - 500.0 150.0 High High limit in % of IBase I1HiLim 0.0 - 500.0 120.0 High limit in % of IBase I1LowLim 0.0 - 500.0 80.0 Low limit in % of IBase I1LowLowLim...
  • Page 506 Section 16 1MRK 511 365-UUS A Monitoring Name Values (Range) Unit Step Default Description V1DbRepInt 1 - 300 Type Cycl: Report interval (s), Db: In % of range, Int Db: In %s V1ZeroDb 0 - 100000 Zero point clamping V1Min 0.0 - 200.0 50.0 Minimum value in % of VBase...
  • Page 507 Section 16 1MRK 511 365-UUS A Monitoring Name Values (Range) Unit Step Default Description 3V0LowLowLim 0.0 - 200.0 60.0 Low Low limit in % of VBase V1HiHiLim 0.0 - 200.0 150.0 High High limit in % of UBase V1HiLim 0.0 - 200.0 120.0 High limit in % of VBase V1LowLim...
  • Page 508 Section 16 1MRK 511 365-UUS A Monitoring Name Values (Range) Unit Step Default Description VB_RepTyp Cyclic Cyclic Reporting type Dead band Int deadband VB_LimHys 0.000 - 100.000 0.001 5.000 Hysteresis value in % of range and is common for all limits VB_AnDbRepInt 1 - 300 Type...
  • Page 509: Monitored Data

    Section 16 1MRK 511 365-UUS A Monitoring 16.1.6 Monitored data Table 401: CVMMXN Monitored data Name Type Values (Range) Unit Description REAL Apparent Power magnitude of deadband value REAL Active Power magnitude of deadband value REAL MVAr Reactive Power magnitude of deadband value REAL Power Factor magnitude of...
  • Page 510 Section 16 1MRK 511 365-UUS A Monitoring Name Type Values (Range) Unit Description VBC_ANGL REAL VBC Angle, magnitude of reported value REAL VCA Reported magnitude value VCA_ANGL REAL VCA Angle, magnitude of reported value Table 404: CMSQI Monitored data Name Type Values (Range) Unit...
  • Page 511: Operation Principle

    Section 16 1MRK 511 365-UUS A Monitoring Name Type Values (Range) Unit Description U1IMAG REAL U1 Amplitude, magnitude of instantaneous value REAL V1 Reported magnitude value U1ANGIM REAL U1 Angle, magnitude of instantaneous value V1ANGL REAL V1 Magnitude angle U2IMAG REAL U2 Amplitude, magnitude of instantaneous value...
  • Page 512 Section 16 1MRK 511 365-UUS A Monitoring • Locally by means of the local HMI • Remotely using the monitoring tool within PCM600 or over the station bus • Internally by connecting the analog output signals to the Disturbance Report function Phase angle reference All phase angles are presented in relation to a defined reference channel.
  • Page 513 Section 16 1MRK 511 365-UUS A Monitoring X_RANGE = 3 High-high limit X_RANGE= 1 Hysteresis High limit X_RANGE=0 X_RANGE=0 Low limit X_RANGE=2 Low-low limit X_RANGE=4 IEC05000657-2-en.vsdx IEC05000657 V2 EN Figure 187: Presentation of operating limits Each analog output has one corresponding supervision level output (X_RANGE). The output signal is an integer in the interval 0-4 (0: Normal, 1: High limit exceeded, 3: High- high limit exceeded, 2: below Low limit and 4: below Low-low limit).
  • Page 514 Section 16 1MRK 511 365-UUS A Monitoring Cyclic reporting The cyclic reporting of measured value is performed according to chosen setting (XRepTyp). The measuring channel reports the value independent of magnitude or integral dead-band reporting. In addition to the normal cyclic reporting the IED also report spontaneously when measured value passes any of the defined threshold limits.
  • Page 515 Section 16 1MRK 511 365-UUS A Monitoring Value Reported Value Reported Value Reported Value Reported (1st) Y Y Y Y Y Y IEC99000529-2-en.vsdx IEC99000529 V2 EN Figure 189: Magnitude dead-band supervision reporting After the new value is reported, the ±ΔY limits for dead-band are automatically set around it.
  • Page 516: Measurements Cvmmxn

    Section 16 1MRK 511 365-UUS A Monitoring A1 >= pre-set value A >= A2 >= pre-set value pre-set value A3 + A4 + A5 + A6 + A7 >= pre-set value Value Reported Value (1st) Value Reported Value Reported Reported Value Reported IEC99000530-2-en.vsdx...
  • Page 517 Section 16 1MRK 511 365-UUS A Monitoring Set value for Formula used for complex, three- Formula used for voltage and Comment parameter phase power calculation current magnitude calculation “Mode” A, B, C Used when three × × × phase-to-ground voltages are EQUATION1561 V1 EN available EQUATION1562 V1 EN...
  • Page 518 Section 16 1MRK 511 365-UUS A Monitoring Set value for Formula used for complex, three- Formula used for voltage and Comment parameter phase power calculation current magnitude calculation “Mode” Used when only × phase-to- = × × ground voltage is available (Equation 75) EQUATION1575 V1 EN...
  • Page 519 Section 16 1MRK 511 365-UUS A Monitoring Each analog output has a corresponding supervision level output (X_RANGE). The output signal is an integer in the interval 0-4, see section "Measurement supervision". Calibration of analog inputs Measured currents and voltages used in the CVMMXN function can be calibrated to get class 0.5 measuring accuracy.
  • Page 520 Section 16 1MRK 511 365-UUS A Monitoring measured quantity. Filtering is performed in accordance with the following recursive formula: = × × Calculated (Equation 83) EQUATION1407 V1 EN where: is a new measured value (that is P, Q, S, V, I or PF) to be given out from the function is the measured value given from the measurement function in previous execution cycle is the new calculated value in the present execution cycle Calculated...
  • Page 521: Phase Current Measurement Cmmxu

    Section 16 1MRK 511 365-UUS A Monitoring Directionality If CT grounding parameter is set as described in section "Analog inputs", active and reactive power will be measured always towards the protected object. This is shown in the following figure 192. Busbar Protected Object...
  • Page 522: Phase-Phase And Phase-Neutral Voltage Measurements Vmmxu, Vnmmxu

    Section 16 1MRK 511 365-UUS A Monitoring of rated current. The compensation below 5% and above 100% is constant and linear in between, see figure 191. Phase currents (magnitude and angle) are available on the outputs and each magnitude output has a corresponding supervision level output (Ix_RANGE). The supervision output signal is an integer in the interval 0-4, see section "Measurement supervision".
  • Page 523 Section 16 1MRK 511 365-UUS A Monitoring Function Range or value Accuracy Active power, P (10 to 300) V ±0.5% of S at S ≤0.5 x S (0.1-4.0) x I ±0.5% of S at S > 0.5 x S (100 to 220) V ±0.2% of P (0.5-2.0) x I cos φ<...
  • Page 524: Gas Medium Supervision Ssimg (63)

    Section 16 1MRK 511 365-UUS A Monitoring Table 410: CMSQI technical data Function Range or value Accuracy Current positive sequence, I1 (0.1–4.0) × I ±0.3% of I at I ≤ 0.5 × I Three phase settings ±0.3% of I at I > 0.5 × I Current zero sequence, 3I0 (0.1–1.0) ×...
  • Page 525: Function Block

    Section 16 1MRK 511 365-UUS A Monitoring 16.2.2 Function block SSIMG (63) BLOCK PRESSURE BLK_ALM PRES_ALM PRESSURE PRES_LO TEMP TEMP PRES_ALM TEMP_ALM PRES_LO TEMP_LO SET_P_LO SET_T_LO RESET_LO ANSI09000129-1-en.vsd ANSI09000129 V1 EN Figure 193: SSIMG (63) function block 16.2.3 Signals Table 413: SSIMG (63) Input signals Name Type...
  • Page 526: Settings

    Section 16 1MRK 511 365-UUS A Monitoring 16.2.4 Settings Table 415: SSIMG (63) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled PressAlmLimit 1.00 - 100.00 0.01 5.00 Alarm setting for pressure PressLOLimit 1.00 - 100.00 0.01 3.00...
  • Page 527: Technical Data

    Section 16 1MRK 511 365-UUS A Monitoring Temperature of the medium is available from the input signal of temperature. The signal is monitored to detect high temperature. When temperature input TEMP is greater than TempAlarmLimit, then temperature alarm TEMP_ALM will be initiated. Similarly, if temperature input TEMP is greater than TempLOLimit, then TEMP_LO will be initiated.
  • Page 528: Liquid Medium Supervision Ssiml (71)

    Section 16 1MRK 511 365-UUS A Monitoring 16.3 Liquid medium supervision SSIML (71) 16.3.1 Functionality Liquid medium supervision SSIML (71) is used for monitoring the circuit breaker condition. Binary information based on the oil level in the circuit breaker is used as input signals to the function.
  • Page 529: Settings

    Section 16 1MRK 511 365-UUS A Monitoring Table 418: SSIML (71) Output signals Name Type Description LEVEL REAL Level service value LVL_ALM BOOLEAN Level below alarm level LVL_LO BOOLEAN Level below lockout level TEMP REAL Temperature of the insulation medium TEMP_ALM BOOLEAN Temperature above alarm level...
  • Page 530: Technical Data

    Section 16 1MRK 511 365-UUS A Monitoring There may be sudden change in oil level for a very small time, for which the function need not to initiate any alarm. That is why two time delays tLevelAlarm or tLevelLockOut have been included.
  • Page 531: Breaker Monitoring Sscbr

    Section 16 1MRK 511 365-UUS A Monitoring Function Range or value Accuracy Time delay for temperature alarm (0.000-60.000) s ±0.2% or ±250ms whichever is greater Reset time delay for temperature (0.000-60.000) s ±0.2% or ±250ms whichever is alarm greater Time delay for temperature (0.000-60.000) s ±0.2% or ±250ms whichever is lockout...
  • Page 532: Signals

    Section 16 1MRK 511 365-UUS A Monitoring 16.4.4 Signals Table 421: SSCBR Input signals Name Type Default Description GROUP Group signal for current input SIGNAL BLOCK BOOLEAN Block all the alarm and lockout indication BLKALM BOOLEAN Block all the alarms TRIND BOOLEAN Trip command from trip circuit...
  • Page 533: Settings

    Section 16 1MRK 511 365-UUS A Monitoring 16.4.5 Settings Table 423: SSCBR Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled GlobalBaseSel 1 - 12 Selection of one of the Global Base Value groups PhSel Phase A...
  • Page 534: Monitored Data

    Section 16 1MRK 511 365-UUS A Monitoring Name Values (Range) Unit Step Default Description ContTrCorr -0.010 - 0.010 0.001 0.005 Correction for time difference in auxiliary and main contacts open time OperTimeDelay 0.000 - 0.200 0.001 0.020 Time delay between change of status of trip output and start of main contact separation tDGasPresAlm 0.00 - 60.00...
  • Page 535 Section 16 1MRK 511 365-UUS A Monitoring I3P-ILRMSPH TTRVOP POSCLOSE POSOPEN CB Contact Travel TTRVCL Time TRVTOPAL BLOCK TRVTCLAL BLKALM RSTTRVT OPENPOS CLOSEPOS CB Status INVDPOS CBLIFEAL Remaining Life of CB CBLIFEPH RSTCBWR TRCMD IPOWALPH Accumulated energy I3P-IL IPOWLOPH TRIND IPOWPH RSTIPOW OPERALM...
  • Page 536: Circuit Breaker Contact Travel Time

    Section 16 1MRK 511 365-UUS A Monitoring IEC12000624 V3 EN Figure 196: Functional module diagram of breaker monitoring 16.4.7.1 Circuit breaker contact travel time The circuit breaker contact travel time subfunction calculates the breaker contact travel time for opening and closing operations. The operation of the breaker contact travel time measurement is described in Figure 197.
  • Page 537 Section 16 1MRK 511 365-UUS A Monitoring Main Contact POSCLOSE POSOPEN tOpen tClose tTravelOpen = tOpen + t1 + t2 tTravelClose = tClose + t3 + t4 IEC12000616_1_en.vsd IEC12000616 V1 EN Figure 198: Travel time calculation There is a time difference t1 between the pickup of the main contact opening and the opening of the POSCLOSE auxiliary contact.
  • Page 538: Circuit Breaker Status

    Section 16 1MRK 511 365-UUS A Monitoring 16.4.7.2 Circuit breaker status The circuit breaker status subfunction monitors the position of the circuit breaker, that is, whether the breaker is in the open, closed or error position. The operation is described in Figure 199.
  • Page 539: Accumulated Energy

    Section 16 1MRK 511 365-UUS A Monitoring I3P-ILRMSPH CB remaining CBLIFEPH POSCLOSE life estimation RSTCBWR Alarm limit BLOCK CBLIFEAL Check BLKALM IEC12000620-3-en.vsd IEC12000620 V3 EN Figure 200: Functional module diagram for estimating the life of the circuit breaker Circuit breaker remaining life estimation If the interrupted current is less than the rated operating current set using the RatedOperCurr setting, the remaining operations of the breaker are reduced by one operation.
  • Page 540 Section 16 1MRK 511 365-UUS A Monitoring I3P-IL TRCMD I3P-ILRMSPH Accumulated energy POSCLOSE calculation IPOWPH TRIND LRSTIPOW IPOWALPH Alarm limit BLOCK Check IPOWLOPH BLKALM IEC12000619-3-en.vsd IEC12000619 V3 EN Figure 201: Functional module diagram for estimating accumulated energy Accumulated energy calculation Accumulated energy can be calculated either with TRIND or POSCLOSE by selecting the AccSelCal parameter value accordingly.
  • Page 541: Circuit Breaker Operation Cycles

    Section 16 1MRK 511 365-UUS A Monitoring initiation and the opening of the main contact is introduced by the setting OperTimeDelay. The accumulated energy output IPOWPH is provided as a service value. The value can be reset by enabling RSTIPOW through LHMI or by activating the input RSTIPOW. Alarm limit check The IPOWALPH alarm is activated when the accumulated energy exceeds the set value AlmAccCurrPwr.
  • Page 542: Circuit Breaker Operation Monitoring

    Section 16 1MRK 511 365-UUS A Monitoring Alarm limit check OPERALM is generated when the number of operations exceeds the set value of the OperAlmLevel threshold setting. If the number of operations increases and exceeds the limit value set with the OperLOLevel setting, the OPERLO output is activated.
  • Page 543: Circuit Breaker Spring Charge Monitoring

    Section 16 1MRK 511 365-UUS A Monitoring 16.4.7.7 Circuit breaker spring charge monitoring The circuit breaker spring charge monitoring subfunction calculates the spring charging time. The operation is described in Figure 205. SPRCHRST Spring charging time SPCHT SPRCHRD measurement RSTSPCHT Alarm limit BLOCK SPCHALM...
  • Page 544: Technical Data

    Section 16 1MRK 511 365-UUS A Monitoring PRESALM tDGasPresAlm BLOCK GPRESALM BLKALM PRESLO tDGasPresLO GPRESLO ANSI12000622 V1 EN Figure 206: Functional module diagram for circuit breaker gas pressure indication When the PRESALM binary input is activated, the GPRESALM output is activated after a time delay set with the tDGasPresAlm setting.
  • Page 545: Event Function Event

    Section 16 1MRK 511 365-UUS A Monitoring 16.5 Event function EVENT 16.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Event function EVENT S00946 V1 EN 16.5.2 Functionality When using a Substation Automation system with LON or SPA communication, time- tagged events can be sent at change or cyclically from the IED to the station level.
  • Page 546: Signals

    Section 16 1MRK 511 365-UUS A Monitoring 16.5.4 Signals Table 427: EVENT Input signals Name Type Default Description BLOCK BOOLEAN Block of function INPUT1 GROUP Input 1 SIGNAL INPUT2 GROUP Input 2 SIGNAL INPUT3 GROUP Input 3 SIGNAL INPUT4 GROUP Input 4 SIGNAL INPUT5...
  • Page 547: Settings

    Section 16 1MRK 511 365-UUS A Monitoring 16.5.5 Settings Table 428: EVENT Non group settings (basic) Name Values (Range) Unit Step Default Description SPAChannelMask Disabled Disabled SPA channel mask Channel 1-8 Channel 9-16 Channel 1-16 LONChannelMask Disabled Disabled LON channel mask Channel 1-8 Channel 9-16 Channel 1-16...
  • Page 548 Section 16 1MRK 511 365-UUS A Monitoring Name Values (Range) Unit Step Default Description EventMask9 NoEvents AutoDetect Reporting criteria for input 9 OnSet OnReset OnChange AutoDetect EventMask10 NoEvents AutoDetect Reporting criteria for input 10 OnSet OnReset OnChange AutoDetect EventMask11 NoEvents AutoDetect Reporting criteria for input 11 OnSet...
  • Page 549: Operation Principle

    Section 16 1MRK 511 365-UUS A Monitoring Name Values (Range) Unit Step Default Description MinRepIntVal10 0 - 3600 Minimum reporting interval input 10 MinRepIntVal11 0 - 3600 Minimum reporting interval input 11 MinRepIntVal12 0 - 3600 Minimum reporting interval input 12 MinRepIntVal13 0 - 3600 Minimum reporting interval input 13...
  • Page 550: Disturbance Report Drprdre

    Section 16 1MRK 511 365-UUS A Monitoring • NoEvents • OnSet • OnReset • OnChange • AutoDetect It is possible to define which part of EVENT function generates the events. This can be performed individually for the SPAChannelMask and LONChannelMask respectively. For each communication type these settings are available: •...
  • Page 551: Functionality

    Section 16 1MRK 511 365-UUS A Monitoring 16.6.2 Functionality Complete and reliable information about disturbances in the primary and/or in the secondary system together with continuous event-logging is accomplished by the disturbance report functionality. Disturbance report DRPRDRE, always included in the IED, acquires sampled data of all selected analog input and binary signals connected to the function block with a, maximum of 40 analog and 96 binary signals.
  • Page 552 Section 16 1MRK 511 365-UUS A Monitoring A1RADR ^GRP INPUT1 ^GRP INPUT2 ^GRP INPUT3 ^GRP INPUT4 ^GRP INPUT5 ^GRP INPUT6 ^GRP INPUT7 ^GRP INPUT8 ^GRP INPUT9 ^GRP INPUT10 IEC05000430-4-en.vsdx IEC05000430 V4 EN Figure 209: A1RADR function block example for A1RADR-A3RADR A4RADR ^INPUT31 ^INPUT32...
  • Page 553: Signals

    Section 16 1MRK 511 365-UUS A Monitoring 16.6.4 Signals Table 429: DRPRDRE Output signals Name Type Description DRPOFF BOOLEAN Disturbance report function turned off RECSTART BOOLEAN Disturbance recording started RECMADE BOOLEAN Disturbance recording made CLEARED BOOLEAN All disturbances in the disturbance report cleared MEMUSED BOOLEAN More than 80% of memory used...
  • Page 554 Section 16 1MRK 511 365-UUS A Monitoring Table 431: A4RADR Input signals Name Type Default Description INPUT31 REAL Analog channel 31 INPUT32 REAL Analog channel 32 INPUT33 REAL Analog channel 33 INPUT34 REAL Analog channel 34 INPUT35 REAL Analog channel 35 INPUT36 REAL Analog channel 36...
  • Page 555: Settings

    Section 16 1MRK 511 365-UUS A Monitoring • B2RBDR: INPUT17 to INPUT32 (binary channels 17 to 32) • B3RBDR: INPUT33 to INPUT48 (binary channels 33 to 48) • B4RBDR: INPUT49 to INPUT64 (binary channels 49 to 64) • B5RBDR: INPUT65 to INPUT80 (binary channels 65 to 80) •...
  • Page 556 Section 16 1MRK 511 365-UUS A Monitoring Name Values (Range) Unit Step Default Description Operation08 Disabled Disabled Operation On/Off Enabled Operation09 Disabled Disabled Operation On/Off Enabled Operation10 Disabled Disabled Operation On/Off Enabled Table 435: A1RADR Non group settings (advanced) Name Values (Range) Unit Step...
  • Page 557 Section 16 1MRK 511 365-UUS A Monitoring Name Values (Range) Unit Step Default Description OverTrigLe04 0 - 5000 Over trigger level for analog channel 4 in % of signal NomValue05 0.0 - 999999.9 Nominal value for analog channel 5 UnderTrigOp05 Disabled Disabled Use under level trigger for analog channel 5...
  • Page 558 Section 16 1MRK 511 365-UUS A Monitoring Name Values (Range) Unit Step Default Description OverTrigOp09 Disabled Disabled Use over level trigger for analog channel 9 (on) Enabled or not (off) OverTrigLe09 0 - 5000 Over trigger level for analog channel 9 in % of signal NomValue10 0.0 - 999999.9...
  • Page 559 Section 16 1MRK 511 365-UUS A Monitoring Name Values (Range) Unit Step Default Description SetLED03 Disabled Disabled Set LED on HMI for binary channel 3 Pickup Trip Pickup and Trip TrigDR04 Disabled Disabled Trigger operation On/Off Enabled SetLED04 Disabled Disabled Set LED on HMI for binary channel 4 Pickup Trip...
  • Page 560 Section 16 1MRK 511 365-UUS A Monitoring Name Values (Range) Unit Step Default Description SetLED11 Disabled Disabled Set LED on HMI for binary channel 11 Pickup Trip Pickup and Trip TrigDR12 Disabled Disabled Trigger operation On/Off Enabled SetLED12 Disabled Disabled Set LED on HMI for binary channel 12 Pickup Trip...
  • Page 561 Section 16 1MRK 511 365-UUS A Monitoring Name Values (Range) Unit Step Default Description InfNo4 0 - 255 Information number for binary channel 4 (IEC -60870-5-103) FunType5 0 - 255 Function type for binary channel 5 (IEC -60870-5-103) InfNo5 0 - 255 Information number for binary channel 5 (IEC -60870-5-103) FunType6...
  • Page 562 Section 16 1MRK 511 365-UUS A Monitoring Name Values (Range) Unit Step Default Description InfNo15 0 - 255 Information number for binary channel 15 (IEC -60870-5-103) FunType16 0 - 255 Function type for binary channel 16 (IEC -60870-5-103) InfNo16 0 - 255 Information number for binary channel 16 (IEC -60870-5-103) Table 437:...
  • Page 563 Section 16 1MRK 511 365-UUS A Monitoring Name Values (Range) Unit Step Default Description IndicationMa09 Hide Show Indication mask for binary channel 9 Show TrigLevel10 Trig on 0 Trig on 1 Trigger on positive (1) or negative (0) slope for Trig on 1 binary input 10 IndicationMa10...
  • Page 564: Monitored Data

    Section 16 1MRK 511 365-UUS A Monitoring • B2RBDR: 17 to 32 (IndicationMa17, indication mask for binary channel 17) • B3RBDR: 33 to 48 (IndicationMa33, indication mask for binary channel 33) • B4RBDR: 49 to 64 (IndicationMa49, indication mask for binary channel 49) •...
  • Page 565 Section 16 1MRK 511 365-UUS A Monitoring Name Type Values (Range) Unit Description OvTrigStatCh8 BOOLEAN Over level trig for analog channel 8 activated UnTrigStatCh9 BOOLEAN Under level trig for analog channel 9 activated OvTrigStatCh9 BOOLEAN Over level trig for analog channel 9 activated UnTrigStatCh10 BOOLEAN...
  • Page 566 Section 16 1MRK 511 365-UUS A Monitoring Name Type Values (Range) Unit Description OvTrigStatCh19 BOOLEAN Over level trig for analog channel 19 activated UnTrigStatCh20 BOOLEAN Under level trig for analog channel 20 activated OvTrigStatCh20 BOOLEAN Over level trig for analog channel 20 activated UnTrigStatCh21 BOOLEAN...
  • Page 567 Section 16 1MRK 511 365-UUS A Monitoring Name Type Values (Range) Unit Description OvTrigStatCh30 BOOLEAN Over level trig for analog channel 30 activated UnTrigStatCh31 BOOLEAN Under level trig for analog channel 31 activated OvTrigStatCh31 BOOLEAN Over level trig for analog channel 31 activated UnTrigStatCh32 BOOLEAN...
  • Page 568: Operation Principle

    Section 16 1MRK 511 365-UUS A Monitoring 16.6.7 Operation principle Disturbance report DRPRDRE is a common name for several functions to supply the operator, analysis engineer, and so on, with sufficient information about events in the system. The functions included in the disturbance report are: •...
  • Page 569 Section 16 1MRK 511 365-UUS A Monitoring AxRADR Disturbance Report DRPRDRE Analog signals Trip value rec BxRBDR Disturbance recorder Binary signals Sequential of events Event recorder Indications ANSI09000337-2-en.vsd ANSI09000337 V2 EN Figure 212: Disturbance report functions and related function blocks The whole disturbance report can contain information for a number of recordings, each with the data coming from all the parts mentioned above.
  • Page 570 Section 16 1MRK 511 365-UUS A Monitoring Number of recordings 3.4s 20 analog 3.4s 96 binary 40 analog 96 binary 6.3s 6.3s 50 Hz 6.3s 60 Hz Total recording time 400 s en05000488_ansi.vsd ANSI05000488 V1 EN Figure 213: Example of number of recordings versus the total recording time The maximum number of recordings depend on each recordings total recording time.
  • Page 571 Section 16 1MRK 511 365-UUS A Monitoring Event recorder (ER) The event recorder may contain a list of up to 150 time-tagged events, which have occurred during the disturbance. The information is available via the local HMI or PCM600. Sequential of events (SOE) The sequetial of events may contain a list of totally 1000 time-tagged events.
  • Page 572 Section 16 1MRK 511 365-UUS A Monitoring Trig point TimeLimit PreFaultRecT PostFaultRecT en05000487.vsd IEC05000487 V1 EN Figure 214: The recording times definition PreFaultRecT, 1 Pre-fault or pre-trigger recording time. The time before the fault including the trip time of PreFaultRecT to set this time. the trigger.
  • Page 573 Section 16 1MRK 511 365-UUS A Monitoring SMAI A1RADR Block AI3P A2RADR ^GRP2_A INPUT1 A3RADR External analog ^GRP2_B INPUT2 signals ^GRP2_C INPUT3 ^GRP2_N INPUT4 Type INPUT5 INPUT6 A4RADR INPUT31 INPUT32 INPUT33 Internal analog signals INPUT34 INPUT35 INPUT36 INPUT40 ANSI10000029-1-en.vsd ANSI10000029 V1 EN Figure 215: Analog input function blocks The external input signals will be acquired, filtered and skewed and (after configuration)
  • Page 574 Section 16 1MRK 511 365-UUS A Monitoring even if operation is set to Disabled. Both undervoltage and overvoltage can be used as trigger conditions. The same applies for the current signals. If Operation = Disabled, no waveform (samples) will be recorded and reported in graph. However, Trip value, pre-fault and fault value will be recorded and reported.
  • Page 575 Section 16 1MRK 511 365-UUS A Monitoring generated. This feature is especially useful for testing. Refer to the operator's manual for procedure. Binary-signal trigger Any binary signal state (logic one or a logic zero) can be selected to generate a trigger (Triglevel = Trig on 0/Trig on 1).
  • Page 576: Technical Data

    Section 16 1MRK 511 365-UUS A Monitoring 16.6.8 Technical data Table 439: DRPRDRE technical data Function Range or value Accuracy Pre-fault time (0.05–9.90) s Post-fault time (0.1–10.0) s Limit time (0.5–10.0) s Maximum number of recordings 100, first in - first out Time tagging resolution 1 ms See table...
  • Page 577: Function Block

    Section 16 1MRK 511 365-UUS A Monitoring 16.7.3 Function block BINSTATREP BLOCK OUTPUT1 ^INPUT1 OUTPUT2 ^INPUT2 OUTPUT3 ^INPUT3 OUTPUT4 ^INPUT4 OUTPUT5 ^INPUT5 OUTPUT6 ^INPUT6 OUTPUT7 ^INPUT7 OUTPUT8 ^INPUT8 OUTPUT9 ^INPUT9 OUTPUT10 ^INPUT10 OUTPUT11 ^INPUT11 OUTPUT12 ^INPUT12 OUTPUT13 ^INPUT13 OUTPUT14 ^INPUT14 OUTPUT15 ^INPUT15 OUTPUT16...
  • Page 578: Settings

    Section 16 1MRK 511 365-UUS A Monitoring Table 441: BINSTATREP Output signals Name Type Description OUTPUT1 BOOLEAN Logical status report output 1 OUTPUT2 BOOLEAN Logical status report output 2 OUTPUT3 BOOLEAN Logical status report output 3 OUTPUT4 BOOLEAN Logical status report output 4 OUTPUT5 BOOLEAN Logical status report output 5...
  • Page 579: Measured Value Expander Block Range_Xp

    Section 16 1MRK 511 365-UUS A Monitoring INPUTn OUTPUTn IEC09000732-1-en.vsd IEC09000732 V1 EN Figure 217: BINSTATREP logical diagram 16.8 Measured value expander block RANGE_XP 16.8.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Measured value expander block RANGE_XP 16.8.2 Functionality...
  • Page 580: Function Block

    Section 16 1MRK 511 365-UUS A Monitoring 16.8.3 Function block RANGE_XP RANGE* HIGHHIGH HIGH NORMAL LOWLOW IEC05000346-2-en.vsd IEC05000346 V2 EN Figure 218: RANGE_XP function block 16.8.4 Signals Table 443: RANGE_XP Input signals Name Type Default Description RANGE INTEGER Measured value range Table 444: RANGE_XP Output signals Name...
  • Page 581: Limit Counter L4Ufcnt

    Section 16 1MRK 511 365-UUS A Monitoring 16.9 Limit counter L4UFCNT 16.9.1 Identification 16.9.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Limit counter L4UFCNT 16.9.2 Functionality The 12 Up limit counter L4UFCNT provides a settable counter with four independent limits where the number of positive and/or negative sides on the input signal are counted against the setting values for limits.
  • Page 582 Section 16 1MRK 511 365-UUS A Monitoring BLOCK INPUT Operation Counter RESET VALUE Overflow CountType OVERFLOW Detection OnMaxValue LIMIT1 … 4 Limit MaxValue Check CounterLimit1...4 ERROR Error Detection InitialValue IEC12000625_1_en.vsd IEC12000625 V1 EN Figure 219: Logic diagram The counter can be initialized to count from a settable non-zero value after reset of the function.
  • Page 583: Reporting

    Section 16 1MRK 511 365-UUS A Monitoring The Error output is activated as an indicator of setting the counter limits and/or initial value setting(s) greater than the maximum value. The counter stops counting the input and all the outputs except the error output remains at zero state. The error condition remains until the correct settings for counter limits and/or initial value setting(s) are applied.
  • Page 584: Settings

    Section 16 1MRK 511 365-UUS A Monitoring Table 447: L4UFCNT Output signals Name Type Description ERROR BOOLEAN Error indication on counter limit and/or initial value settings OVERFLOW BOOLEAN Overflow indication on count of greater than MaxValue LIMIT1 BOOLEAN Counted value is larger than or equal to CounterLimit1 LIMIT2 BOOLEAN Counted value is larger than or equal to CounterLimit2...
  • Page 585: Technical Data

    Section 16 1MRK 511 365-UUS A Monitoring 16.9.8 Technical data Table 450: L4UFCNTtechnical data Function Range or value Accuracy Counter value 0-65535 Max. count up speed 30 pulses/s (50% duty cycle) 16.10 Running hour-meter TEILGAPC 16.10.1 Identification Function Description IEC 61850 IEC 60617 ANSI/IEEE C37.2 device identification...
  • Page 586: Function Block

    Section 16 1MRK 511 365-UUS A Monitoring • Applicable to very long time accumulation (≤ 99999.9 hours) • Supervision of limit transgression conditions and rollover/overflow • Possibility to define a warning and alarm with the resolution of 0.1 hours • Retain any saved accumulation value at a restart •...
  • Page 587: Settings

    Section 16 1MRK 511 365-UUS A Monitoring 16.10.5 Settings Table 453: TEILGAPC Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled tAlarm 1.0 - 99999.9 Hour 90000.0 Time limit for alarm supervision tWarning 1.0 - 99999.9 Hour 50000.0...
  • Page 588: Operation Accuracy

    Section 16 1MRK 511 365-UUS A Monitoring • applicable to very long time accumulation (≤99999.9 hours) • output ACC_HOUR presents accumulated value in hours and ACC_DAY presents accumulated value in days • accumulated value is retained in a non-volatile memory •...
  • Page 589: Memory Storage

    Section 16 1MRK 511 365-UUS A Monitoring • the pulse length • the number of pulses, that is, the number of rising and falling flank pairs In principle, more pulses may lead to reduced accuracy. 16.10.6.2 Memory storage The value of the accumulated time is retained in a non-volatile memory, •...
  • Page 591: Pulse-Counter Logic Pcfcnt

    Section 17 1MRK 511 365-UUS A Metering Section 17 Metering 17.1 Pulse-counter logic PCFCNT 17.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Pulse-counter logic PCFCNT S00947 V1 EN 17.1.2 Functionality Pulse-counter logic (PCFCNT) function counts externally generated binary pulses, for instance pulses coming from an external energy meter, for calculation of energy consumption values.
  • Page 592: Signals

    Section 17 1MRK 511 365-UUS A Metering 17.1.4 Signals Table 455: PCFCNT Input signals Name Type Default Description BLOCK BOOLEAN Block of function READ_VAL BOOLEAN Initiates an additional pulse counter reading BI_PULSE BOOLEAN Connect binary input channel for metering RS_CNT BOOLEAN Resets pulse counter value Table 456:...
  • Page 593: Monitored Data

    Section 17 1MRK 511 365-UUS A Metering 17.1.6 Monitored data Table 458: PCFCNT Monitored data Name Type Values (Range) Unit Description CNT_VAL INTEGER Actual pulse counter value SCAL_VAL REAL Scaled value with time and status information 17.1.7 Operation principle The registration of pulses is done for positive transitions (0->1) on one of the 16 binary input channels located on the Binary Input Module (BIM).
  • Page 594 Section 17 1MRK 511 365-UUS A Metering Figure shows the pulse-counter logic function block with connections of the inputs and outputs. PulseCounter SingleCmdFunc EVENT OUTx BLOCK INVALID INPUT1 Pulse RESTART INPUT2 SingleCmdFunc READ_VAL OUTx INPUT OUT BLOCKED INPUT3 Pulse length >1s I/O- NEW_VAL INPUT4...
  • Page 595: Technical Data

    Section 17 1MRK 511 365-UUS A Metering The BLOCKED signal is a steady signal and is set when the counter is blocked. There are two reasons why the counter is blocked: • The BLOCK input is set, or • The Binary Input Module, where the counter input is situated, is inoperative. The NEW_VAL signal is a pulse signal.
  • Page 596: Function Block

    Section 17 1MRK 511 365-UUS A Metering accumulated active and reactive energy pulses, in forward and reverse direction. Energy values can be read or generated as pulses. Maximum demand power values are also calculated by the function. This function includes zero point clamping to remove noise from the input signal.
  • Page 597: Signals

    Section 17 1MRK 511 365-UUS A Metering 17.2.4 Signals Table 460: ETPMMTR Input signals Name Type Default Description REAL Measured active power REAL Measured reactive power STARTACC BOOLEAN Start to accumulate energy values STOPACC BOOLEAN Stop accumulating energy values RSTACC BOOLEAN Reset of accumulated enery reading RSTDMD...
  • Page 598: Settings

    Section 17 1MRK 511 365-UUS A Metering 17.2.5 Settings Table 462: ETPMMTR Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled EnaAcc Disabled Disabled Activate the accumulation of energy values Enabled tEnergy 1 Minute 1 Minute Time interval for energy calculation...
  • Page 599: Monitored Data

    Section 17 1MRK 511 365-UUS A Metering Name Values (Range) Unit Step Default Description EARPrestVal 0.000 - 0.001 0.000 Preset Initial value for reverse active energy 100000000.000 ERFPresetVal 0.000 - MVArh 0.001 0.000 Preset Initial value for forward reactive energy 100000000.000 ERRPresetVal 0.000 -...
  • Page 600 Section 17 1MRK 511 365-UUS A Metering MAXPAFD RSTDMD MAXPARD MAXPRFD MAXPRRD Maximum Power Zero Clamping EAFALM Demand Calculation Detection EARALM ERFALM ERRALM ACCINPRG EAFPULSE EARPULSE ERFPULSE Energy Accumulation ERRPULSE STARTACC Calculation EAFACC EARACC STOPACC ERFACC ERRACC RSTACC IEC13000185-2-en.vsd IEC13000185 V2 EN Figure 228: ETPMMTR Functional overview logical diagram The integration of energy values is enabled by the setting EnaAcc and controlled by the...
  • Page 601 Section 17 1MRK 511 365-UUS A Metering Figure 230 shows the logic for integration of energy in active forward direction. Similarly, the integration of energy in active reverse, reactive forward and reactive reverse is done. RSTACC EAFPrestVal ACCINPRG P* (ACTIVE FORWARD) EAFACC 60.0 &...
  • Page 602 Section 17 1MRK 511 365-UUS A Metering tEnergyOffPls EAFACC Counter a>b EALim tOff ÷ EAFPULSE a>b ÷ EAFAccPlsQty Counter RSTACC tEnergyOnPls = unit delay IEC13000188-4-en.vsd IEC13000188 V4 EN Figure 231: Logic for pulse generation of integrated active forward energy The maximum demand values for active and reactive power are calculated for the set time interval tEnergy.
  • Page 603: Technical Data

    Section 17 1MRK 511 365-UUS A Metering 17.2.8 Technical data 17.2.8.1 Technical data Table 465: Function Range or value Accuracy Energy metering MWh Export/Import, MVarh Input from MMXU. No extra error Export/Import at steady load Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 605: Communication Protocols

    Section 18 1MRK 511 365-UUS A Station communication Section 18 Station communication 18.1 Communication protocols Each IED is provided with a communication interface, enabling it to connect to one or many substation level systems or equipment, either on the Substation Automation (SA) bus or Substation Monitoring (SM) bus.
  • Page 606: Dnp3 Protocol

    Section 18 1MRK 511 365-UUS A Station communication IEC15000400-1-en.vsd IEC15000400 V1 EN Figure 233: Protocol diagnostic screen in LHMI 18.3 DNP3 protocol DNP3 (Distributed Network Protocol) is a set of communications protocols used to communicate data between components in process automation systems. For a detailed description of the DNP3 protocol, see the DNP3 Communication protocol manual.
  • Page 607: Communication Interfaces And Protocols

    Section 18 1MRK 511 365-UUS A Station communication 18.4.2 Communication interfaces and protocols Table 466: Supported station communication interfaces and protocols Protocol Ethernet Serial 100BASE-FX (ST Glass fibre (ST connector) EIA-485 connector) IEC 61850–8–1 ● DNP3 ● ● ● IEC 60870-5-103 ●...
  • Page 608: Technical Data

    Section 18 1MRK 511 365-UUS A Station communication 18.4.4 Technical data Table 468: Communication protocols Function Value Protocol IEC 61850-8-1 Communication speed for the IEDs 100BASE-FX Protocol IEC 60870–5–103 Communication speed for the IEDs 9600 or 19200 Bd Protocol DNP3.0 Communication speed for the IEDs 300–19200 Bd Protocol...
  • Page 609: Signals

    Section 18 1MRK 511 365-UUS A Station communication 18.4.5.2 Signals Table 469: SPGAPC Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN Input status Table 470: SP16GAPC Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN Input 1 status BOOLEAN...
  • Page 610: Generic Communication Function For Measured Value Mvgapc

    Section 18 1MRK 511 365-UUS A Station communication Table 472: SP16GAPC Monitored data Name Type Values (Range) Unit Description OUT1 GROUP Output 1 status SIGNAL OUT2 GROUP Output 2 status SIGNAL OUT3 GROUP Output 3 status SIGNAL OUT4 GROUP Output 4 status SIGNAL OUT5 GROUP...
  • Page 611: Function Block

    Section 18 1MRK 511 365-UUS A Station communication 18.4.6.1 Function block MVGAPC BLOCK ^VALUE RANGE IEC14000022-1-en.vsd IEC14000022 V1 EN Figure 236: MVGAPC function block 18.4.6.2 Settings Table 473: MVGAPC Non group settings (basic) Name Values (Range) Unit Step Default Description BasePrefix micro unit...
  • Page 612: Monitored Data

    Section 18 1MRK 511 365-UUS A Station communication 18.4.6.3 Monitored data Table 474: MVGAPC Monitored data Name Type Values (Range) Unit Description VALUE REAL Magnitude of deadband value RANGE INTEGER 1=High Range 2=Low 3=High-High 4=Low-Low 0=Normal 18.4.6.4 Operation principle Upon receiving an analog signal at its input, Generic communication function for Measured Value (MVGAPC) will give the instantaneous value of the signal and the range, as output values.
  • Page 613: Signals

    Section 18 1MRK 511 365-UUS A Station communication 18.4.7.3 Signals Table 475: PRPSTATUS Output signals Name Type Description PRP-A LINK BOOLEAN PRP-A Link Status PRP-A VALID BOOLEAN PRP-A Link Valid PRP-B LINK BOOLEAN PRP-B Link Status PRP-B VALID BOOLEAN PRP-B Link Valid 18.4.7.4 Settings Table 476:...
  • Page 614: Principle Of Operation

    Section 18 1MRK 511 365-UUS A Station communication 18.4.7.6 Principle of operation The communication is performed in parallel, that is the same data package is transmitted on both channels simultaneously. The received package identity from one channel is compared with data package identity from the other channel, if they are the same, the last package is discarded.
  • Page 615: Iec 61850-9-2Le Communication Protocol

    Section 18 1MRK 511 365-UUS A Station communication Station Control System Redundancy Supervision Data Data Switch A Switch B Data Data Configuration PRPSTATUS =IEC09000758=3=en=Original.vsd IEC09000758 V3 EN Figure 238: Redundant station bus 18.5 IEC 61850-9-2LE communication protocol 18.5.1 Introduction The IEC 61850-9-2LE process bus communication protocol enables an IED to communicate with devices providing measured values in digital format, commonly Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 616: Function Block

    Section 18 1MRK 511 365-UUS A Station communication known as Merging Units (MU). The physical interface in the IED that is used for the communication is the OEM modules (the two port module version) "CD" port. 18.5.2 Function block The function blocks are not represented in the configuration tool. The signals appear only in the SMT tool when merging units (MU) are included in the configuration with the function selector tool.
  • Page 617 Section 18 1MRK 511 365-UUS A Station communication Name Type Description STRING Analogue input V1 STRING Analogue input V2 STRING Analogue input V3 STRING Analogue input V4 MUDATA BOOLEAN Fatal error, serious data loss SYNCH BOOLEAN Operational mode on ethernet link SMPLLOST BOOLEAN Sample lost...
  • Page 618 Section 18 1MRK 511 365-UUS A Station communication Name Type Description STRING Analogue input V4 MUDATA BOOLEAN Fatal error, serious data loss SYNCH BOOLEAN Operational mode on ethernet link SMPLLOST BOOLEAN Sample lost MUSYNCH BOOLEAN Synchronization lost in MU TESTMODE BOOLEAN MU in test mode Table 482:...
  • Page 619: Settings

    Section 18 1MRK 511 365-UUS A Station communication Name Type Description SMPLLOST BOOLEAN Sample lost MUSYNCH BOOLEAN Synchronization lost in MU TESTMODE BOOLEAN MU in test mode 18.5.4 Settings Table 484: MU1_4I_4U Non group settings (basic) Name Values (Range) Unit Step Default Description...
  • Page 620 Section 18 1MRK 511 365-UUS A Station communication Table 487: MU2_4I_4U Non group settings (advanced) Name Values (Range) Unit Step Default Description SynchMode NoSynch Operation Synchronization mode Init Operation Table 488: MU3_4I_4U Non group settings (basic) Name Values (Range) Unit Step Default Description...
  • Page 621 Section 18 1MRK 511 365-UUS A Station communication Table 491: MU4_4I_4U Non group settings (advanced) Name Values (Range) Unit Step Default Description SynchMode NoSynch Operation Synchronization mode Init Operation Table 492: MU5_4I_4U Non group settings (basic) Name Values (Range) Unit Step Default Description...
  • Page 622: Monitored Data

    Section 18 1MRK 511 365-UUS A Station communication Table 495: MU6_4I_4U Non group settings (advanced) Name Values (Range) Unit Step Default Description SynchMode NoSynch Operation Synchronization mode Init Operation 18.5.5 Monitored data Table 496: MU1_4I_4U Monitored data Name Type Values (Range) Unit Description MUDATA...
  • Page 623 Section 18 1MRK 511 365-UUS A Station communication Table 498: MU3_4I_4U Monitored data Name Type Values (Range) Unit Description MUDATA BOOLEAN 0=Ok Fatal error, serious data loss 1=Error SYNCH BOOLEAN 0=Ok Operational mode on ethernet 1=Error link SMPLLOST BOOLEAN 1=Yes Sample lost 0=No MUSYNCH...
  • Page 624: Operation Principle

    The gathered data are then transmitted to subscribers over the process bus, utilizing the IEC 61850-9-2LE protocol. ABB "physical MU" contains up to 3 logical MUs, each capable of sampling 4 currents and 4 voltages.
  • Page 625 Section 18 1MRK 511 365-UUS A Station communication Application Station Wide Preprocessing blocks Preprocessing blocks GPS Clock SMAI SMAI Splitter Electrical-to- Optical Converter 1PPS TRM module OEM Module 110 V IEC61850-9-2LE Ethernet Switch IEC61850-9-2LE IEC61850-9-2LE 1PPS 1PPS Merging Merging Unit Unit Combi Combi...
  • Page 626: Technical Data

    Section 18 1MRK 511 365-UUS A Station communication The function has the following alarm signals: • MUDATA: Indicates when sample sequence needs to be realigned. that is the application soon needs to be restarted. The signal is raised to 2 s before the application is restarted.
  • Page 627: Lon Communication Protocol

    Section 18 1MRK 511 365-UUS A Station communication 18.6 LON communication protocol 18.6.1 Functionality An optical network can be used within the substation automation system. This enables communication with the IED through the LON bus from the operator’s workplace, from the control center and also from other terminals.
  • Page 628: Operation Principle

    Add LON Device Types LNT A new device is added to LON Network Tool from the Device menu or by installing the device from the ABB LON Device Types package for LNT 505 using SLDT package version 1p2 r04. Phasor measurement unit RES670 2.1 ANSI...
  • Page 629 Section 18 1MRK 511 365-UUS A Station communication LON net address To establish a LON connection, the IED has to be given a unique net address. The net address consists of a subnet and node number. This is accomplished with the LON Network Tool by creating one device for each IED.
  • Page 630 Section 18 1MRK 511 365-UUS A Station communication Function block First LON address in function block EVENT:4 1072 EVENT:5 1088 EVENT:6 1104 EVENT:7 1120 EVENT:8 1136 EVENT:9 1152 EVENT:10 1168 EVENT:11 1184 EVENT:12 1200 EVENT:13 1216 EVENT:14 1232 EVENT:15 1248 EVENT:16 1264 EVENT:17...
  • Page 631 Section 18 1MRK 511 365-UUS A Station communication Double indications can only be reported via switch-control (SCSWI) functions, the event reporting is based on information from switch-control, no change detection is done in the event function block. Directly connected binary IO signal via binary input function block (SMBI) is not possible to handle as double indication.
  • Page 632 Section 18 1MRK 511 365-UUS A Station communication This is an overview for configuring the network variables for the IEDs. Configuration of LON network variables Configure the Network variables according to the specific application using the LON network tool (LNT). The following is an example of how to configure network variables concerning, for example, interlocking between two IEDs.
  • Page 633 Section 18 1MRK 511 365-UUS A Station communication en05000719.vsd IEC05000719 V1 EN Figure 241: The network variables window in LNT There are two ways of downloading NV connections. Either the users can use the drag- and-drop method where they can select all nodes in the device window, drag them to the Download area in the bottom of the program window and drop them there;...
  • Page 634: Communication Ports

    Section 18 1MRK 511 365-UUS A Station communication en05000720.vsd IEC05000720 V1 EN Figure 242: The download configuration window in LNT Communication ports The serial communication module (SLM) is a mezzanine module placed on the Main Processing Module (NUM) and is used for LON, SPA, IEC60870-5-103 and DNP communication.
  • Page 635 Section 18 1MRK 511 365-UUS A Station communication Name Function Description block address BL_CMD SCSWI05 1 I 5210 SPA parameters for block command BL_CMD SCSWI06 1 I 5234 SPA parameters for block command BL_CMD SCSWI07 1 I 5258 SPA parameters for block command BL_CMD SCSWI08...
  • Page 636 Section 18 1MRK 511 365-UUS A Station communication Name Function Description block address BL_CMD SCSWI27 1 I 5739 SPA parameters for block command BL_CMD SCSWI28 1 I 5763 SPA parameters for block command BL_CMD SCSWI29 1 I 5787 SPA parameters for block command BL_CMD SCSWI30...
  • Page 637 Section 18 1MRK 511 365-UUS A Station communication Name Function Description block address CANCEL SCSWI17 1 I 5491 SPA parameters for cancel command CANCEL SCSWI18 1 I 5515 SPA parameters for cancel command CANCEL SCSWI19 1 I 5537 SPA parameters for cancel command CANCEL SCSWI20...
  • Page 638 Section 18 1MRK 511 365-UUS A Station communication Name Function Description block address SELECTOpen=00, SCSWI05 1 I 5200 SPA parameters for select (Open/ SELECTClose=01, so on. Close) command SELECTOpen=00, SCSWI06 1 I 5224 SPA parameters for select (Open/ SELECTClose=01, so on. Close) command SELECTOpen=00, SCSWI07...
  • Page 639 Section 18 1MRK 511 365-UUS A Station communication Name Function Description block address SELECTOpen=00, SCSWI27 1 I 5729 SPA parameters for select (Open/ SELECTClose=01, so on. Close) command SELECTOpen=00, SCSWI28 1 I 5753 SPA parameters for select (Open/ SELECTClose=01, so on. Close) command SELECTOpen=00, SCSWI29...
  • Page 640 Section 18 1MRK 511 365-UUS A Station communication Name Function Description block address ExcOpen=00, SCSWI15 1 I 5442 SPA parameters for operate (Open/ ExcClose=01, so on. Close) command ExcOpen=00, SCSWI16 1 I 5466 SPA parameters for operate (Open/ ExcClose=01, so on. Close) command ExcOpen=00, SCSWI17...
  • Page 641 Section 18 1MRK 511 365-UUS A Station communication Name Function Description block address Sub Value SXCBR05 2 I 7923 SPA parameter for position to be substituted Sub Value SXCBR06 2 I 7942 SPA parameter for position to be substituted Sub Value SXCBR07 2 I 7961 SPA parameter for position to be...
  • Page 642 Section 18 1MRK 511 365-UUS A Station communication Name Function Description block address Sub Value SXSWI09 3 I 348 SPA parameter for position to be substituted Sub Value SXSWI10 3 I 359 SPA parameter for position to be substituted Sub Value SXSWI11 3 I 378 SPA parameter for position to be...
  • Page 643 Section 18 1MRK 511 365-UUS A Station communication Name Function Description block address Sub Enable SXCBR02 2 I 7865 SPA parameter for substitute enable command Sub Enable SXCBR03 2 I 7885 SPA parameter for substitute enable command Sub Enable SXCBR04 2 I 7903 SPA parameter for substitute enable command...
  • Page 644 Section 18 1MRK 511 365-UUS A Station communication Name Function Description block address Sub Enable SXSWI06 3 I 290 SPA parameter for substitute enable command Sub Enable SXSWI07 3 I 309 SPA parameter for substitute enable command Sub Enable SXSWI08 3 I 328 SPA parameter for substitute enable command...
  • Page 645 Section 18 1MRK 511 365-UUS A Station communication Name Function Description block address Sub Enable SXSWI28 3 I 702 SPA parameter for substitute enable command Update Block SXCBR01 2 I 7853 SPA parameter for update block command Update Block SXCBR02 2 I 7864 SPA parameter for update block command...
  • Page 646 Section 18 1MRK 511 365-UUS A Station communication Name Function Description block address Update Block SXSWI04 3 I 253 SPA parameter for update block command Update Block SXSWI05 3 I 273 SPA parameter for update block command Update Block SXSWI06 3 I 291 SPA parameter for update block command...
  • Page 647: Iec 60870-5-103 Communication Protocol

    Section 18 1MRK 511 365-UUS A Station communication Name Function Description block address Update Block SXSWI26 3 I 662 SPA parameter for update block command Update Block SXSWI27 3 I 681 SPA parameter for update block command Update Block SXSWI28 3 I 700 SPA parameter for update block command...
  • Page 648: Identification

    Section 18 1MRK 511 365-UUS A Station communication 18.7.2.2 Identification Function description Function block IEC 60617 ANSI/IEEE C37.2 name identification device number Measurands for IEC 60870-5-103 I103MEAS 18.7.2.3 Function block I103MEAS BLOCK V_AB ANSI10000287-1-en.vsd ANSI10000287 V1 EN Figure 243: I103MEAS function block 18.7.2.4 Signals Table 507:...
  • Page 649: Settings

    Section 18 1MRK 511 365-UUS A Station communication 18.7.2.5 Settings Table 508: I103MEAS Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) MaxIa 1 - 99999 3000 Maximum current phase A MaxIb 1 - 99999 3000...
  • Page 650: Function Block

    Section 18 1MRK 511 365-UUS A Station communication 18.7.3.3 Function block I103MEASUSR BLOCK ^INPUT1 ^INPUT2 ^INPUT3 ^INPUT4 ^INPUT5 ^INPUT6 ^INPUT7 ^INPUT8 ^INPUT9 IEC10000288-1-en.vsd IEC10000288 V1 EN Figure 244: I103MEASUSR function block 18.7.3.4 Signals Table 509: I103MEASUSR Input signals Name Type Default Description BLOCK...
  • Page 651: Function Status Auto-Recloser For Iec 60870-5-103 I103Ar

    Section 18 1MRK 511 365-UUS A Station communication Name Values (Range) Unit Step Default Description MaxMeasur3 0.05 - 0.05 1000.00 Maximum value for measurement on input 3 10000000000.00 MaxMeasur4 0.05 - 0.05 1000.00 Maximum value for measurement on input 4 10000000000.00 MaxMeasur5 0.05 -...
  • Page 652: Signals

    Section 18 1MRK 511 365-UUS A Station communication 18.7.4.4 Signals Table 511: I103AR Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting 16_ARACT BOOLEAN Information number 16, auto-recloser active 128_CBON BOOLEAN Information number 128, circuit breaker on by auto- recloser 130_BLKD BOOLEAN...
  • Page 653: Signals

    Section 18 1MRK 511 365-UUS A Station communication 18.7.5.4 Signals Table 513: I103EF Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting 51_EFFW BOOLEAN Information number 51, ground-fault forward 52_EFREV BOOLEAN Information number 52, ground-fault reverse 18.7.5.5 Settings Table 514: I103EF Non group settings (basic)
  • Page 654: Function Block

    Section 18 1MRK 511 365-UUS A Station communication 18.7.6.3 Function block I103FLTPROT BLOCK 64_PU_A 65_PU_B 66_PU_C 67_STIN 68_TRGEN 69_TR_A 70_TR_B 71_TR_C 72_TRBKUP 73_SCL 74_FW 75_REV 76_TRANS 77_RECEV 78_ZONE1 79_ZONE2 80_ZONE3 81_ZONE4 82_ZONE5 84_STGEN 85_BFP 86_MTR_A 87_MTR_B 88_MTR_C 89_MTRN 90_IOC 91_IOC 92_IEF 93_IEF ARINPROG...
  • Page 655: Settings

    Section 18 1MRK 511 365-UUS A Station communication Name Type Default Description 74_FW BOOLEAN Information number 74, forward/line 75_REV BOOLEAN Information number 75, reverse/busbar 76_TRANS BOOLEAN Information number 76, signal transmitted 77_RECEV BOOLEAN Information number 77, signal received 78_ZONE1 BOOLEAN Information number 78, zone 1 79_ZONE2 BOOLEAN...
  • Page 656: Identification

    Section 18 1MRK 511 365-UUS A Station communication 18.7.7.2 Identification Function description Function block IEC 60617 ANSI/IEEE C37.2 name identification device number IED status for IEC 60870-5-103 I103IED 18.7.7.3 Function block I103IED BLOCK 19_LEDRS 21_TESTM 22_SETCH 23_GRP1 24_GRP2 25_GRP3 26_GRP4 IEC10000292-2-en.vsd IEC10000292 V2 EN Figure 248:...
  • Page 657: Supervison Status For Iec 60870-5-103 I103Superv

    Section 18 1MRK 511 365-UUS A Station communication 18.7.8 Supervison status for IEC 60870-5-103 I103SUPERV 18.7.8.1 Functionality I103SUPERV is a function block with defined functions for supervision indications in monitor direction. This block includes the FunctionType parameter, and the information number parameter is defined for each output signal.
  • Page 658: Settings

    Section 18 1MRK 511 365-UUS A Station communication 18.7.8.5 Settings Table 520: I103SUPERV Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) 18.7.9 Status for user defined signals for IEC 60870-5-103 I103USRDEF 18.7.9.1 Functionality...
  • Page 659: Signals

    Section 18 1MRK 511 365-UUS A Station communication 18.7.9.4 Signals Table 521: I103USRDEF Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting INPUT1 BOOLEAN Binary signal Input 1 INPUT2 BOOLEAN Binary signal input 2 INPUT3 BOOLEAN Binary signal input 3 INPUT4 BOOLEAN Binary signal input 4...
  • Page 660 Section 18 1MRK 511 365-UUS A Station communication Name Values (Range) Unit Step Default Description TypNo4 Absolute Absolute Type identification (TYP) Relative TypNo5 Absolute Absolute Type identification (TYP) Relative TypNo6 Absolute Absolute Type identification (TYP) Relative TypNo7 Absolute Absolute Type identification (TYP) Relative TypNo8 Absolute...
  • Page 661: Function Commands For Iec 60870-5-103 I103Cmd

    Section 18 1MRK 511 365-UUS A Station communication 18.7.10 Function commands for IEC 60870-5-103 I103CMD 18.7.10.1 Functionality I103CMD is a command function block in control direction with pre-defined output signals. The signals are in steady state, not pulsed, and stored in the IED in case of restart. 18.7.10.2 Identification Function description...
  • Page 662: Ied Commands For Iec 60870-5-103 I103Iedcmd

    Section 18 1MRK 511 365-UUS A Station communication 18.7.11 IED commands for IEC 60870-5-103 I103IEDCMD 18.7.11.1 Functionality I103IEDCMD is a command block in control direction with defined IED functions. All outputs are pulsed and they are NOT stored. Pulse-time is a hidden parameter. 18.7.11.2 Identification Function description...
  • Page 663: Settings

    Section 18 1MRK 511 365-UUS A Station communication 18.7.11.5 Settings Table 528: I103IEDCMD Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) 18.7.12 Function commands user defined for IEC 60870-5-103 I103USRCMD 18.7.12.1 Functionality I103USRCMD is a command block in control direction with user defined output signals.
  • Page 664: Settings

    Section 18 1MRK 511 365-UUS A Station communication Table 530: I103USRCMD Output signals Name Type Description OUTPUT1 BOOLEAN Command output 1 OUTPUT2 BOOLEAN Command output 2 OUTPUT3 BOOLEAN Command output 3 OUTPUT4 BOOLEAN Command output 4 OUTPUT5 BOOLEAN Command output 5 OUTPUT6 BOOLEAN Command output 6...
  • Page 665: Identification

    Section 18 1MRK 511 365-UUS A Station communication The I103GENCMD component can be configured as either 2 pulsed ON/OFF or 2 steady ON/OFF outputs. The ON output is pulsed with a command with value 2, while the OFF output is pulsed with a command value 1. If in steady mode is ON asserted and OFF deasserted with command 2 and vice versa with command 1.
  • Page 666: Settings

    Section 18 1MRK 511 365-UUS A Station communication 18.7.13.5 Settings Table 534: I103GENCMD Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) PulseLength 0.000 - 60.000 0.001 0.400 Pulse length InfNo 1 - 255 Information number for command output (1-255)
  • Page 667: Function Block

    Section 18 1MRK 511 365-UUS A Station communication 18.7.14.3 Function block I103POSCMD BLOCK POSITION SELECT IEC10000286-1-en.vsd IEC10000286 V1 EN Figure 255: I103POSCMD function block 18.7.14.4 Signals Table 535: I103POSCMD Input signals Name Type Default Description BLOCK BOOLEAN Block of command POSITION INTEGER Position of controllable object...
  • Page 668 Section 18 1MRK 511 365-UUS A Station communication • Command handling • Autorecloser ON/OFF • Teleprotection ON/OFF • Protection ON/OFF • LED reset • Characteristics 1 - 4 (Setting groups) • File transfer (disturbance files) • Time synchronization For detailed information about IEC 60870-5-103, refer to the IEC 60870 standard part 5: Transmission protocols, and to the section 103: Companion standard for the informative interface of protection equipment.
  • Page 669 Section 18 1MRK 511 365-UUS A Station communication Function command block in control direction with defined output signals. Number of instances: 1 Function type is selected with parameter FunctionType. Information number is defined for each output signals. Table 538: Pre-defined I103CMD supported indications Description Auto-recloser on/off Teleprotection on/off...
  • Page 670 Section 18 1MRK 511 365-UUS A Station communication Function type is selected with parameter FunctionType. Information number is defined for each input signals. Table 540: I103IED supported functions Description LED reset TestMode Local Parameter setting Setting group 1 active Setting group 2 active Setting group 3 active Setting group 4 active Function status indications in monitor direction, user-defined, I103USRDEF...
  • Page 671 Section 18 1MRK 511 365-UUS A Station communication Information number is defined for output signals. Table 542: I103SUPERV supported functions Info. no. Message Measurand supervision I 1,7,9 Measurand supervision V 1,7,9 I>>back-up operation 1,7,9 VT fuse failure 1,7,9 Group warning 1,7,9 Group alarm 1,7,9...
  • Page 672 Section 18 1MRK 511 365-UUS A Station communication Info. no. Message Supported Trip A Trip B Trip C General trip Fault forward/line Fault reverse/busbar Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Signal transmitted Signal received SCL, Fault location in ohm Fault indications in monitor direction, type 2, I103FltStd Fault indication block for faults in monitor direction with defined functions.
  • Page 673 Section 18 1MRK 511 365-UUS A Station communication Info. no. Message Supported Breaker failure Trip measuring system A Trip measuring system B Trip measuring system C Trip measuring system N Over current trip I> Over current trip I>> Ground fault trip IN> Ground fault trip IN>>...
  • Page 674 Section 18 1MRK 511 365-UUS A Station communication base exists, and then use 1.2 or 2.4 times <rated> as maxVal. You can use 2.4 times rated as maxVal, but as there is no way to propagate value to client, the use of a scale factor on <rated>...
  • Page 675 Section 18 1MRK 511 365-UUS A Station communication Table 546: I103MEASUSR supported indications Description No, polled Meas1 with CL2 No, polled Meas2 with CL2 No, polled Meas3 with CL2 No, polled Meas4 with CL2 No, polled Meas5 with CL2 No, polled Meas6 with CL2 No, polled...
  • Page 676 Section 18 1MRK 511 365-UUS A Station communication • connected to channel 6 on disturbance function block A1RADR • connected to channel 7 on disturbance function block A1RADR • connected to channel 8 on disturbance function block A1RADR Channel number used for the remaining 32 analog signals are numbers in the private range 64 to 95.
  • Page 677 Section 18 1MRK 511 365-UUS A Station communication Recorded fault with trip. [1] Disturbance data waiting for transmission [0] OTEV Disturbance data initiated by other events [1] Another information element in ASDU23 is the FAN (fault number). According to the standard this is a number that is incremented when a protection function takes action.
  • Page 678 Section 18 1MRK 511 365-UUS A Station communication Interoperability, application layer Supported Selection of standard ASDUs in monitoring direction ASDU Time-tagged message Time-tagged message with rel. time Measurands I Time-tagged message with rel. time Identification Time synchronization End of general interrogation Measurands II Generic data Generic identification...
  • Page 679: Communication Ports

    Section 18 1MRK 511 365-UUS A Station communication 18.7.15.2 Communication ports The serial communication module (SLM) is used for SPA/IEC 60870-5-103/DNP and LON communication. This module is a mezzanine module, and can be placed on the Analog/Digital conversion module (ADM). The serial communication module can have connectors for two plastic fibre cables (snap-in) or two glass fibre cables (ST, bayonet) or a combination of plastic and glass fibre.
  • Page 680: Signals

    Section 18 1MRK 511 365-UUS A Station communication 18.8.2 Signals Table 547: GOOSEBINRCV Input signals Name Type Default Description BLOCK BOOLEAN Block of output signals Table 548: GOOSEBINRCV Output signals Name Type Description OUT1 BOOLEAN Binary output 1 DVALID1 BOOLEAN Valid data on binary output 1 OUT2 BOOLEAN...
  • Page 681: Settings

    Section 18 1MRK 511 365-UUS A Station communication Name Type Description DVALID15 BOOLEAN Valid data on binary output 15 OUT16 BOOLEAN Binary output 16 DVALID16 BOOLEAN Valid data on binary output 16 COMMVALID BOOLEAN Communication Valid TEST BOOLEAN Test Output 18.8.3 Settings Table 549:...
  • Page 682: Signals

    Section 18 1MRK 511 365-UUS A Station communication 18.9.4 Signals Table 550: GOOSEDPRCV Input signals Name Type Default Description BLOCK BOOLEAN Block of function Table 551: GOOSEDPRCV Output signals Name Type Description DPOUT INTEGER Double point output DATAVALID BOOLEAN Data valid for double point output COMMVALID BOOLEAN Communication valid for double point output...
  • Page 683: Goose Function Block To Receive An Integer Value Gooseintrcv

    Section 18 1MRK 511 365-UUS A Station communication 18.10 GOOSE function block to receive an integer value GOOSEINTRCV 18.10.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number GOOSE function block to receive an GOOSEINTRCV integer value 18.10.2 Functionality GOOSEINTRCV is used to receive an integer value using IEC61850 protocol via...
  • Page 684: Settings

    Section 18 1MRK 511 365-UUS A Station communication 18.10.5 Settings Table 555: GOOSEINTRCV Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled 18.10.6 Operation principle The DATAVALID output will be HIGH if the incoming message is with valid data. The COMMVALID output will become LOW when the sending IED is under total failure condition and the GOOSE transmission from the sending IED does not happen.
  • Page 685: Functionality

    Section 18 1MRK 511 365-UUS A Station communication 18.11.2 Functionality GOOSEMVRCV is used to receive measured value using IEC61850 protocol via GOOSE. 18.11.3 Function block GOOSEMVRCV BLOCK ^MVOUT DATAVALID COMMVALID TEST IEC10000251-1-en.vsd IEC10000251 V1 EN Figure 259: GOOSEMVRCV function block 18.11.4 Signals Table 556:...
  • Page 686: Functionality

    Section 18 1MRK 511 365-UUS A Station communication The COMMVALID output will become LOW when the sending IED is under total failure condition and the GOOSE transmission from the sending IED does not happen. The TEST output will go HIGH if the sending IED is in test mode. The input of this GOOSE block must be linked in SMT by means of a cross to receive the measured value.
  • Page 687: Signals

    Section 18 1MRK 511 365-UUS A Station communication 18.12.4 Signals Table 559: GOOSESPRCV Input signals Name Type Default Description BLOCK BOOLEAN Block of function Table 560: GOOSESPRCV Output signals Name Type Description SPOUT BOOLEAN Single point output DATAVALID BOOLEAN Data valid for single point output COMMVALID BOOLEAN Communication valid for single point output...
  • Page 688: Multicmdrcv And Multicmdsnd

    Section 18 1MRK 511 365-UUS A Station communication 18.13 MULTICMDRCV and MULTICMDSND Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Multiple command and receive MULTICMDRCV Multiple command and send MULTICMDSND 18.13.1 Functionality The IED provides two function blocks enabling several IEDs to send and receive signals via the interbay bus.
  • Page 689: Function Block

    Section 18 1MRK 511 365-UUS A Station communication 18.13.3 Function block MULTICMDRCV BLOCK ERROR NEWDATA OUTPUT1 OUTPUT2 OUTPUT3 OUTPUT4 OUTPUT5 OUTPUT6 OUTPUT7 OUTPUT8 OUTPUT9 OUTPUT10 OUTPUT11 OUTPUT12 OUTPUT13 OUTPUT14 OUTPUT15 OUTPUT16 VALID IEC06000007-2-en.vsd IEC06000007 V2 EN Figure 261: MULTICMDRCV function block MULTICMDSND BLOCK ERROR...
  • Page 690 Section 18 1MRK 511 365-UUS A Station communication Table 563: MULTICMDSND Input signals Name Type Default Description BLOCK BOOLEAN Block of function INPUT1 BOOLEAN Input 1 INPUT2 BOOLEAN Input 2 INPUT3 BOOLEAN Input 3 INPUT4 BOOLEAN Input 4 INPUT5 BOOLEAN Input 5 INPUT6 BOOLEAN...
  • Page 691: Settings

    Section 18 1MRK 511 365-UUS A Station communication Name Type Description OUTPUT13 BOOLEAN Output 13 OUTPUT14 BOOLEAN Output 14 OUTPUT15 BOOLEAN Output 15 OUTPUT16 BOOLEAN Output 16 VALID BOOLEAN Output data is valid Table 565: MULTICMDSND Output signals Name Type Description ERROR BOOLEAN...
  • Page 692: Security Events On Protocols Secalarm

    Section 18 1MRK 511 365-UUS A Station communication The MULTICMDRCV function block has 16 binary outputs, all controlled through the command block of one or many MULTICMDSND function blocks. There are 60 instances of the MULTICMDRCV where the first 12 are fast (8 ms), and the others are slow (100 ms).
  • Page 693: Settings

    Section 18 1MRK 511 365-UUS A Station communication 18.15.2 Settings Table 570: ACTIVLOG Non group settings (basic) Name Values (Range) Unit Step Default Description ExtLogSrv1Type Disabled Disabled External log server 1 type ExtLogSrv1Type SYSLOG TCP/IP CEF TCP/IP ExtLogSrv1Port 1 - 65535 External log server 1 port number ExtLogSrv1IP 0 - 18...
  • Page 695: Binary Signal Transfer

    Section 19 1MRK 511 365-UUS A Remote communication Section 19 Remote communication 19.1 Binary signal transfer 19.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Binary signal transfer BinSignReceive Binary signal transfer BinSignTransm 19.1.2 Functionality The remote end data communication is used either for the transmission of current values with a maximum of 8 binary signals in the line differential protection IED, or for the transmission of only binary signals (up to 192) in the other IEDs.
  • Page 696: Function Block

    Section 19 1MRK 511 365-UUS A Remote communication 19.1.3 Function block LDCMRecBinStat1 COMFAIL YBIT NOCARR NOMESS ADDRERR LNGTHERR CRCERROR REMCOMF LOWLEVEL IEC07000043-2-en.vsd IEC07000043 V2 EN LDCMRecBinStat2 COMFAIL YBIT NOCARR NOMESS ADDRERR LNGTHERR CRCERROR TRDELERR SYNCERR REMCOMF REMGPSER SUBSTITU LOWLEVEL IEC07000044-2-en.vsd IEC07000044 V2 EN Figure 263: LDCMRecBinStat function blocks...
  • Page 697: Signals

    Section 19 1MRK 511 365-UUS A Remote communication 19.1.4 Signals Table 571: LDCMRecBinStat1 Output signals Name Type Description COMFAIL BOOLEAN Detected error in the differential communication YBIT BOOLEAN Detected error in remote end with incoming message NOCARR BOOLEAN No carrier is detected in the incoming message NOMESS BOOLEAN No start and stop flags identified for the incoming...
  • Page 698: Settings

    Section 19 1MRK 511 365-UUS A Remote communication Table 573: LDCMRecBinStat3 Output signals Name Type Description STRING Remote communication channel 1 STRING Remote communication channel 2 STRING Remote communication channel 3 STRING Remote communication channel 4 COMFAIL BOOLEAN Detected error in the differential communication YBIT BOOLEAN Detected error in remote end with incoming message...
  • Page 699 Section 19 1MRK 511 365-UUS A Remote communication Name Values (Range) Unit Step Default Description ComFailAlrmDel 5 - 500 Time delay before communication error signal is activated ComFailResDel 5 - 500 Reset delay before communication error signal is reset InvertPolX21 Disabled Disabled Invert polarization for X21 communication...
  • Page 700 Section 19 1MRK 511 365-UUS A Remote communication Name Values (Range) Unit Step Default Description CompRange 0-10kA 0-25kA Compression range 0-25kA 0-50kA 0-150kA MaxtDiffLevel 200 - 2000 Maximum time diff for ECHO back-up DeadbandtDiff 200 - 1000 Deadband for t Diff InvertPolX21 Disabled Disabled...
  • Page 701: Monitored Data

    Section 19 1MRK 511 365-UUS A Remote communication Name Values (Range) Unit Step Default Description MaxTransmDelay 0 - 40 Max allowed transmission delay CompRange 0-10kA 0-25kA Compression range 0-25kA 0-50kA 0-150kA MaxtDiffLevel 200 - 2000 Maximum time diff for ECHO back-up DeadbandtDiff 200 - 1000 Deadband for t Diff...
  • Page 702: Operation Principle

    Section 19 1MRK 511 365-UUS A Remote communication Table 579: LDCMRecBinStat3 Monitored data Name Type Values (Range) Unit Description CommStatus BOOLEAN 0=Ok Status of communication link 1=SyncErr 2=No RXD 3=LocalGPSErr 4=RemGPSErr 5=LocAndRemG PSErr 6=LocalADErr 7=RemADErr 8=LocAndRemA DErr 9=AddressErr 10=FreqConfErr 11=LatencyConf 19.1.7 Operation principle The communication is made on standard ITU (CCITT) PCM digital 64 kbit/s channels.
  • Page 703: Transmission Of Analog Data From Ldcm Ldcmtransmit

    Section 19 1MRK 511 365-UUS A Remote communication binary signals which can be used for any purpose. The three currents are represented as sampled values. When the communication is used exclusively for binary signals, the full data capacity of the communication channel is used for the binary signal purpose which gives the capacity of 192 signals.
  • Page 704 Section 19 1MRK 511 365-UUS A Remote communication Name Type Default Description CT2L1 STRING Input to be used for transmit CT-group2 line L1 to remote CT2L2 STRING Input to be used for transmit CT-group2 line L2 to remote CT2L3 STRING Input to be used for transmit CT-group2 line L3 to remote CT2N STRING...
  • Page 705: Authority Check Athchck

    Section 20 1MRK 511 365-UUS A Basic IED functions Section 20 Basic IED functions 20.1 Authority check ATHCHCK 20.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Authority check ATHCHCK 20.1.2 Functionality To safeguard the interests of our customers, both the IED and the tools that are accessing the IED are protected, by means of authorization handling.
  • Page 706: Operation Principle

    Section 20 1MRK 511 365-UUS A Basic IED functions IEC12000202-2-en.vsd IEC12000202 V2 EN Figure 267: PCM600 user management tool 20.1.3 Operation principle There are different levels (or types) of users that can access or operate different areas of the IED and tools functionality. The pre-defined user types are given in Table 581.
  • Page 707 Section 20 1MRK 511 365-UUS A Basic IED functions Table 581: Pre-defined user types Access rights System Protection Design User Guest Super User SPA Guest Operator Engineer Engineer Administrator Basic setting possibilities (change setting group, control settings, limit supervision) Advanced setting possibilities (for example protection settings) Basic control possibilities (process control, no bypass)
  • Page 708: Authorization With Central Account Management Enabled Ied

    Section 20 1MRK 511 365-UUS A Basic IED functions Only characters A - Z, a - z and 0 - 9 should be used in user names and passwords. The maximum of characters in a password is 18. At least one user must be included in the UserAdministrator group to be able to write users, created in PCM600, to IED.
  • Page 709 Section 20 1MRK 511 365-UUS A Basic IED functions One user can have one or several user roles. By default, the users in Table are created in the IED, and when creating new users in the SDM600 server, the predefined roles from Table can be used.
  • Page 710 Section 20 1MRK 511 365-UUS A Basic IED functions The PCM600 tool caches the login credentials after successful login for 15 minutes. During that time no more login will be necessary. The successfully activation of Central Account Management will disable built-in users or remove all local created users from PCM600.
  • Page 711: Authority Management Authman

    Section 20 1MRK 511 365-UUS A Basic IED functions Table 584: Authority-related IED functions Function Description Authority status This function is an indication function block for user logon activity. ATHSTAT User denied attempt to logon and user successful logon are reported. Authority check To safeguard the interests of our customers, both the IED and the tools that are ATHCHCK...
  • Page 712: Ftp Access With Password Ftpaccs

    Section 20 1MRK 511 365-UUS A Basic IED functions 20.3 FTP access with password FTPACCS 20.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number FTP access with SSL FTPACCS 20.3.2 FTP access with TLS, FTPACCS The FTP Client defaults to the best possible security mode when trying to negotiate with TLS.
  • Page 713: Authority Status Athstat

    Section 20 1MRK 511 365-UUS A Basic IED functions 20.4 Authority status ATHSTAT 20.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Authority status ATHSTAT 20.4.2 Functionality Authority status ATHSTAT function is an indication function block for user log-on activity.
  • Page 714: Operation Principle

    Section 20 1MRK 511 365-UUS A Basic IED functions 20.4.6 Operation principle Authority status (ATHSTAT) function informs about two events related to the IED and the user authorization: • the fact that at least one user has tried to log on wrongly into the IED and it was blocked (the output USRBLKED) •...
  • Page 715: Signals

    Section 20 1MRK 511 365-UUS A Basic IED functions 20.5.3 Signals Table 588: INTERRSIG Output signals Name Type Description FAIL BOOLEAN Internal fail WARNING BOOLEAN Internal warning TSYNCERR BOOLEAN Time synchronization error RTCERR BOOLEAN Real time clock error DISABLE BOOLEAN Application Disable 20.5.4 Settings...
  • Page 716 Section 20 1MRK 511 365-UUS A Basic IED functions IEC15000414-1-en.vsdx IEC15000414 V1 EN Figure 270: IED general status in local HM The self supervision records internal signal changes in an internal event list. A maximum of 40 internal events are stored in a first-in, first-out manner. GUID-B481701F-05B4-4B29-83D4-18F13886FEBE V1 EN Figure 271: Self-supervision event list in local HMI...
  • Page 717: Internal Signals

    Section 20 1MRK 511 365-UUS A Basic IED functions 20.5.5.1 Internal signals Self supervision provides several status signals that give information about the internal status of the IED. For this reason they are also called internal signals. These internal signals , available on local HMI under Main menu/Diagnostics/IED status/General, can be divided into two groups.
  • Page 718 Section 20 1MRK 511 365-UUS A Basic IED functions Name of signal Description Displayed on Reasons for activation local HMI as APPERROR Runtime Runtime App This signal will be active if one or more of the Application Error application threads are not in the state that Runtime Error Engine expects.
  • Page 719: Supervision Of Analog Inputs

    Section 20 1MRK 511 365-UUS A Basic IED functions Card Name of signal Description Displayed on Reasons for activation local HMI as ADM-Error ADM32 Activated if the module has a hardware error. Module Error status OEM-Error Optical OEM3nn Activated if the module has a hardware error. Ethernet n = slot number Module...
  • Page 720: Time Synchronization

    Section 20 1MRK 511 365-UUS A Basic IED functions 20.6 Time synchronization 20.6.1 Functionality The time synchronization source selector is used to select a common source of absolute time for the IED. For RES670 as a Phasor Measurement Unit (PMU) an accurate time synchronization is essential to allow the comparison of phasors measured at different locations in a Wide Area Monitoring System (WAMS).
  • Page 721 Section 20 1MRK 511 365-UUS A Basic IED functions Table 592: TIMESYNCHGEN Non group settings (basic) Name Values (Range) Unit Step Default Description FineSyncSource Disabled Disabled Fine time synchronization source IRIG-B GPS+IRIG-B SyncMaster Disabled Disabled Activate IEDas synchronization master SNTP-Server AppSynch NoSynch NoSynch...
  • Page 722 Section 20 1MRK 511 365-UUS A Basic IED functions Table 594: DSTBEGIN Non group settings (basic) Name Values (Range) Unit Step Default Description MonthInYear January March Month in year when daylight time starts February March April June July August September October November December...
  • Page 723 Section 20 1MRK 511 365-UUS A Basic IED functions Table 595: DSTEND Non group settings (basic) Name Values (Range) Unit Step Default Description MonthInYear January October Month in year when daylight time ends February March April June July August September October November December...
  • Page 724 Section 20 1MRK 511 365-UUS A Basic IED functions Table 596: TIMEZONE Non group settings (basic) Name Values (Range) Unit Step Default Description TimeZone -12:00 1:00 Local time from UTC -11:00 -10:00 -9:30 -9:00 -8:00 -7:00 -6:00 -5:00 -4:30 -4:00 -3:30 -3:00 -2:00...
  • Page 725: Operation Principle

    Section 20 1MRK 511 365-UUS A Basic IED functions 20.6.3 Operation principle 20.6.3.1 General concepts Time definitions The error of a clock is the difference between the actual time of the clock, and the time the clock is intended to have. Clock accuracy indicates the increase in error, that is, the time gained or lost by the clock.
  • Page 726: Real-Time Clock (Rtc) Operation

    Section 20 1MRK 511 365-UUS A Basic IED functions Synchronization principle From a general point of view synchronization can be seen as a hierarchical structure. A function is synchronized from a higher level and provides synchronization to lower levels. Synchronization from a higher level Function Optional synchronization of...
  • Page 727 Section 20 1MRK 511 365-UUS A Basic IED functions Real-time clock at startup At IED startup, the internal time is free running. If the RTC is still alive since the last up time, the time in the IED will be accurate (may drift 35 ppm), but if the RTC power has been lost during power off (will happen after 5 days), the IED time will start at 01-01-2003.
  • Page 728: Synchronization Alternatives

    Section 20 1MRK 511 365-UUS A Basic IED functions 20.6.3.3 Synchronization alternatives Three main alternatives of external synchronization sources are available. The IED also supports redundant time synchronization via both GPS and IRIG-B. The synchronization message is applied: • via GPS •...
  • Page 729: Process Bus Iec 61850-9-2Le Synchronization

    Section 20 1MRK 511 365-UUS A Basic IED functions TZ Offset supplied in the message equals UTC at all times. For RES670, optical IRIG-B 00x with IEEE1344 support is recommended. Redundant time synchronization via both GPS and IRIG-B In order to improve the time reliability of the PMU, time synchronization redundancy is provided in RES670.
  • Page 730: Function Block

    Section 20 1MRK 511 365-UUS A Basic IED functions 20.7.2 Function block ActiveGroup ACTGRP1 GRP1 ACTGRP2 GRP2 ACTGRP3 GRP3 ACTGRP4 GRP4 ACTGRP5 GRP5 ACTGRP6 GRP6 GRP_CHGD ANSI05000433-2-en.vsd ANSI05000433 V2 EN Figure 274: ActiveGroup function block 20.7.3 Signals Table 599: ACTVGRP Input signals Name Type Default...
  • Page 731: Settings

    Section 20 1MRK 511 365-UUS A Basic IED functions 20.7.4 Settings Table 601: SETGRPS Non group settings (basic) Name Values (Range) Unit Step Default Description ActiveSetGrp SettingGroup1 SettingGroup1 Active setting group SettingGroup2 SettingGroup3 SettingGroup4 SettingGroup5 SettingGroup6 MaxNoSetGrp 1 - 6 Max number of setting groups 1-6 20.7.5 Operation principle...
  • Page 732: Changelock Function Chnglck

    Section 20 1MRK 511 365-UUS A Basic IED functions IEC61850-8-1 configuration under Main menu/Configuration/Communication/ Station communication/IEC61850-8-1/IEC61850-8-1. Please refer to documentation for IEC61850 for further details. Switching can only be done within that number of groups. The number of setting groups selected to be used will be filtered so only the setting groups used will be shown on the Parameter Setting Tool.
  • Page 733: Function Block

    Section 20 1MRK 511 365-UUS A Basic IED functions 20.8.2 Function block CHNGLCK LOCK* ACTIVE OVERRIDE IEC09000946.vsd IEC09000946 V2 EN Figure 276: CHNGLCK function block 20.8.3 Signals Table 602: CHNGLCK Input signals Name Type Default Description LOCK BOOLEAN Activate change lock Table 603: CHNGLCK Output signals Name...
  • Page 734: Test Mode Functionality Test

    Section 20 1MRK 511 365-UUS A Basic IED functions • Set system time • Enter and exit from test mode • Change of active setting group The binary input signal LOCK controlling the function is defined in ACT or SMT: Binary input Function Activated...
  • Page 735: Signals

    Section 20 1MRK 511 365-UUS A Basic IED functions 20.9.3 Signals Table 604: TESTMODE Input signals Name Type Default Description IED_TEST BOOLEAN Activate IED test mode Table 605: TESTMODE Output signals Name Type Description TEST BOOLEAN In test via IED TEST or via LD0 Mode IED_TEST BOOLEAN IED test mode is active...
  • Page 736: Ied Identifiers

    Section 20 1MRK 511 365-UUS A Basic IED functions While the IED is in test mode, the output ACTIVE of the function block TESTMODE is activated. The other outputs of the function block TESTMODE shows the cause of the "Test mode: Enabled" state — input from configuration (OUTPUT signal is activated) or setting from local HMI (SETTING signal is activated).
  • Page 737: Settings

    The settings are visible on the local HMI , under Main menu/Diagnostics/IED status/ Product identifiersand underMain menu/Diagnostics/IED Status/IED identifiers This information is very helpful when interacting with ABB product support (e.g. during repair and maintenance). Phasor measurement unit RES670 2.1 ANSI...
  • Page 738: Settings

    Section 20 1MRK 511 365-UUS A Basic IED functions 20.11.2 Settings The function does not have any parameters available in the local HMI or PCM600. 20.11.3 Factory defined settings The factory defined settings are very useful for identifying a specific version and very helpful in the case of maintenance, repair, interchanging IEDs between different Substation Automation Systems and upgrading.
  • Page 739: Signal Matrix For Binary Inputs Smbi

    Section 20 1MRK 511 365-UUS A Basic IED functions 20.12 Signal matrix for binary inputs SMBI 20.12.1 Functionality The Signal matrix for binary inputs (SMBI) function is used within the Application Configuration Tool (ACT) in direct relation with the Signal Matrix Tool (SMT), see the application manual to get information about how binary inputs are brought in for one IED configuration.
  • Page 740: Operation Principle

    Section 20 1MRK 511 365-UUS A Basic IED functions Table 609: SMBI Output signals Name Type Description BOOLEAN Binary input 1 BOOLEAN Binary input 2 BOOLEAN Binary input 3 BOOLEAN Binary input 4 BOOLEAN Binary input 5 BOOLEAN Binary input 6 BOOLEAN Binary input 7 BOOLEAN...
  • Page 741: Function Block

    Section 20 1MRK 511 365-UUS A Basic IED functions 20.13.2 Function block SMBO ^BO1 ^BO2 ^BO3 ^BO4 ^BO5 ^BO6 ^BO7 ^BO8 ^BO9 BO10 ^BO10 IEC05000439-2-en.vsd IEC05000439 V2 EN Figure 279: SMBO function block 20.13.3 Signals Table 610: SMBO Input signals Name Type Default...
  • Page 742: Functionality

    Section 20 1MRK 511 365-UUS A Basic IED functions 20.14.1 Functionality The Signal matrix for mA inputs (SMMI) function is used within the Application Configuration Tool (ACT) in direct relation with the Signal Matrix Tool (SMT). See the Application Manual for information about how milliamp (mA) inputs from external transducers are physically connected to the MIM board inputs used in an IED.
  • Page 743: Operation Principle

    Section 20 1MRK 511 365-UUS A Basic IED functions 20.14.4 Operation principle The Signal matrix for mA inputs (SMMI) function, see figure 280, receives its inputs from the real (hardware) mA inputs (the MIM boards) via the Signal Matrix Tool (SMT), and makes them available to the rest of the configuration via its analog outputs, named AI1 to AI6.
  • Page 744: Signals

    Section 20 1MRK 511 365-UUS A Basic IED functions The task time defines the execution repetition rate, and is 1, 3 or 8 ms respectively for the three task time groups. SMAI2 BLOCK G2AI3P REVROT G2AI1 ^GRP2_A G2AI2 ^GRP2_B G2AI3 ^GRP2_C G2AI4 ^GRP2_N...
  • Page 745: Settings

    Section 20 1MRK 511 365-UUS A Basic IED functions Name Type Description G1AI3 GROUP SIGNAL Group 1 analog input 3 G1AI4 GROUP SIGNAL Group 1 analog input 4 GROUP SIGNAL Group parameter for residual sample Table 615: SMAI2 Input signals Name Type Default...
  • Page 746 Section 20 1MRK 511 365-UUS A Basic IED functions Table 617: SMAI1 Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 12 Selection of one of the Global Base Value groups DFTRefExtOut InternalDFTRef InternalDFTRef DFT reference for external output DFTRefGrp1 DFTRefGrp2 DFTRefGrp3...
  • Page 747: Operation Principle

    Section 20 1MRK 511 365-UUS A Basic IED functions Table 619: SMAI2 Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 12 Selection of one of the Global Base Value groups DFTReference InternalDFTRef InternalDFTRef DFT reference DFTRefGrp1 DFTRefGrp2 DFTRefGrp3...
  • Page 748: Frequency Values

    Section 20 1MRK 511 365-UUS A Basic IED functions first three inputs. A3P is grouped, three-phase information containing all relevant information about four connected inputs. Note that all other functions, with a few exceptions, use this output in configuration. Note that the SMAI function will always calculate the residual sum of current/voltage if the input GRPxN is not connected in SMT.
  • Page 749: Summation Block 3 Phase 3Phsum

    Section 20 1MRK 511 365-UUS A Basic IED functions voltage is connected to all three SMAI inputs, the positive sequence voltage will be zero and the frequency functions will not work properly. The outputs from the above configured SMAI block shall only be used for Overfrequency protection (SAPTOF, 81), Underfrequency protection (SAPTUF, 81) and Rate-of-change frequency protection (SAPFRC, 81) due to that all other information except frequency and positive sequence...
  • Page 750: Settings

    Section 20 1MRK 511 365-UUS A Basic IED functions Name Type Default Description REVROT BOOLEAN Reverse rotation G1AI3P GROUP Group 1 three phase analog input from first SMAI SIGNAL G2AI3P GROUP Group 2 three phase analog input from second SMAI SIGNAL Table 622: 3PHSUM Output signals...
  • Page 751: Operation Principle

    Section 20 1MRK 511 365-UUS A Basic IED functions Table 624: 3PHSUM Non group settings (advanced) Name Values (Range) Unit Step Default Description FreqMeasMinVal 5 - 200 Amplitude limit for frequency calculation in % of UBase 20.16.5 Operation principle Summation block 3 phase 3PHSUM receives the three-phase signals from Signal matrix for analog inputs function (SMAI).
  • Page 752: Primary System Values Primval

    Section 20 1MRK 511 365-UUS A Basic IED functions Table 625: GBASVAL Non group settings (basic) Name Values (Range) Unit Step Default Description VBase 0.05 - 2000.00 0.05 400.00 Global base voltage IBase 1 - 99999 3000 Global base current SBase 1.00 - 200000.00 0.05...
  • Page 753: Function Blocks

    Section 20 1MRK 511 365-UUS A Basic IED functions loads can be controlled. Heavy network load might for instance be the result of malfunctioning equipment connected to the network. 20.19.2 Function blocks DOSFRNT LINKUP WARNING ALARM IEC09000749-1-en.vsd IEC09000749 V1 EN Figure 285: DOSFRNT function block DOSLANAB...
  • Page 754: Settings

    Section 20 1MRK 511 365-UUS A Basic IED functions Table 629: DOSLANCD Output signals Name Type Description LINKUP BOOLEAN Ethernet link status WARNING BOOLEAN Frame rate is higher than normal state ALARM BOOLEAN Frame rate is higher than throttle state 20.19.4 Settings The function does not have any parameters available in the local HMI or PCM600.
  • Page 755: Operation Principle

    Section 20 1MRK 511 365-UUS A Basic IED functions 20.19.6 Operation principle The Denial of service functions (DOSFRNT, DOSLANAB and DOSLANCD) measures the IED load from communication and, if necessary, limit it for not jeopardizing the IEDs control and protection functionality due to high CPU load. The function has the following outputs: •...
  • Page 757: Overview

    Section 21 1MRK 511 365-UUS A IED hardware Section 21 IED hardware 21.1 Overview 21.1.1 Variants of case size with local HMI display ANSI04000458-2-en.psd ANSI04000458 V2 EN Figure 288: 1/2 19” case with local HMI display. Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 758 Section 21 1MRK 511 365-UUS A IED hardware ANSI05000762-2-en.psd ANSI05000762 V2 EN Figure 289: 3/4 19” case with local HMI display. ANSI04000460 -2-en.psd ANSI04000460 V2 EN Figure 290: 1/1 19” case with local HMI display. Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 759: Case From The Rear Side

    Section 21 1MRK 511 365-UUS A IED hardware 21.1.2 Case from the rear side Table 633: Designations for 1/2 x 19” casing with 1 TRM slot Module Rear Positions BIM, BOM, SOM, IOM or X31 and X32 etc. to X51 and X52 X301:A, B, C, D LDCM, IRIG-B or RS485...
  • Page 760 Section 21 1MRK 511 365-UUS A IED hardware Table 634: Designations for 3/4 x 19” casing with 1 TRM slot Module Rear Positions BIM, BOM, SOM, IOM or X31 and X32 etc. to X101 and X102 X301:A, B, C, D LDCM, IRIG-B or RS485 X302 LDCM or RS485...
  • Page 761 Section 21 1MRK 511 365-UUS A IED hardware Table 635: Designations for 3/4 x 19” casing with 2 TRM slot Module Rear Positions BIM, BOM, SOM, IOM or X31 and X32 etc. to X71 and X301:A, B, C, D LDCM, IRIG-B or RS485 X302 LDCM or RS485 X303...
  • Page 762 Section 21 1MRK 511 365-UUS A IED hardware Table 636: Designations for 1/1 x 19” casing with 1 TRM slot Module Rear Positions BIM, BOM, SOM, X31 and X32 etc. to X161 and IOM or MIM X162 X301:A, B, C, D LDCM, IRIG-B or X302 RS485...
  • Page 763 Section 21 1MRK 511 365-UUS A IED hardware Table 637: Designations for 1/1 x 19” casing with 2 TRM slots Module Rear Positions BIM, BOM, SOM, X31 and X32 etc. to X131 and IOM or MIM X132 X301:A, B, C, D LDCM, IRIG-B or X302 RS485...
  • Page 764: Hardware Modules

    Section 21 1MRK 511 365-UUS A IED hardware 21.2 Hardware modules 21.2.1 Overview Table 638: Basic modules Module Description Power supply module (PSM) Including a regulated DC/DC converter that supplies auxiliary voltage to all static circuits. • An internal fail alarm output is available. Numerical module (NUM) Module for overall application control.
  • Page 765: Numeric Processing Module (Num)

    Section 21 1MRK 511 365-UUS A IED hardware 21.2.2 Numeric processing module (NUM) 21.2.2.1 Introduction The Numeric processing module (NUM), is a CPU-module that handles all protection functions and logic. For communication with high speed modules, e.g. analog input modules and high speed serial interfaces, the NUM is equipped with a Compact PCI bus.
  • Page 766: Block Diagram

    Section 21 1MRK 511 365-UUS A IED hardware 21.2.2.3 Block diagram Compact Logic Flash connector PC-MIP Memory Ethernet North bridge PCI-PCI- bridge en04000473.vsd IEC04000473 V1 EN Figure 291: Numeric processing module block diagram 21.2.3 Power supply module (PSM) 21.2.3.1 Introduction The power supply module is used to provide the correct internal voltages and full isolation between the IED and the battery system.
  • Page 767: Design

    Section 21 1MRK 511 365-UUS A IED hardware 21.2.3.2 Design There are two types of the power supply module. They are designed for different DC input voltage ranges see table 640. The power supply module contains a built-in, self-regulated DC/DC converter that provides full isolation between the terminal and the external battery system.
  • Page 768: Design

    Section 21 1MRK 511 365-UUS A IED hardware Alternative connectors of Ring lug or Compression type can be ordered. 21.2.5.2 Design The transformer module has 12 input transformers. There are several versions of the module, each with a different combination of voltage and current input transformers. Basic versions: •...
  • Page 769: Technical Data

    Section 21 1MRK 511 365-UUS A IED hardware IEC08000479 V2 EN Figure 293: TRM connection diagram 21.2.5.3 Technical data Table 641: TRM - Energizing quantities, rated values and limits for protection transformer modules Quantity Rated value Nominal range Current = 1 or 5 A (0.2-40) ×...
  • Page 770: Introduction

    Section 21 1MRK 511 365-UUS A IED hardware Quantity Rated value Nominal range Burden < 20 mVA at 110 V Frequency = 60/50 Hz ±5% max. 350 A for 1 s when COMBITEST test switch is included. Table 642: TRM - Energizing quantities, rated values and limits for measuring transformer modules Quantity Rated value Nominal range...
  • Page 771: Design

    Section 21 1MRK 511 365-UUS A IED hardware 21.2.6.2 Design The Analog digital conversion module input signals are voltage and current from the transformer module. Shunts are used to adapt the current signals to the electronic voltage level. To gain dynamic range for the current inputs, two shunts with separate A\D channels are used for each input current.
  • Page 772 Section 21 1MRK 511 365-UUS A IED hardware Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 1.2v Channel 7 Channel 8 Channel 9 Channel 10 Channel 11 Channel 12 level shift PC-MIP 2.5v PCI to PCI PC-MIP en05000474.vsd IEC05000474 V1 EN...
  • Page 773: Binary Input Module (Bim)

    Section 21 1MRK 511 365-UUS A IED hardware 21.2.7 Binary input module (BIM) 21.2.7.1 Introduction The binary input module has 16 optically isolated inputs and is available in two versions, one standard and one with enhanced pulse counting capabilities on the inputs to be used with the pulse counter function.
  • Page 774 Section 21 1MRK 511 365-UUS A IED hardware 24/30V 48/60V 110/125V 220/250V xx99000517-2_ansi.vsd ANSI99000517 V2 EN Figure 295: Voltage dependence for the binary inputs Operation Operation uncertain No operation IEC99000517-ABC V1 EN This binary input module communicates with the Numerical module (NUM). The design of all binary inputs enables the burn off of the oxide of the relay contact connected to the input, despite the low, steady-state power consumption, which is shown in figure...
  • Page 775 Section 21 1MRK 511 365-UUS A IED hardware [mA] [ms] en07000104-3.vsd IEC07000104 V3 EN Figure 296: Approximate binary input inrush current for the standard version of BIM. [mA] [ms] en07000105-1.vsd IEC07000105 V2 EN Figure 297: Approximate binary input inrush current for the BIM version with enhanced pulse counting capabilities.
  • Page 776: Signals

    Section 21 1MRK 511 365-UUS A IED hardware IEC99000503 V3 EN Figure 298: Connection diagram 21.2.7.3 Signals Table 644: BIM Output signals Name Type Description STATUS BOOLEAN Binary input module status BOOLEAN Binary input 1 BOOLEAN Binary input 2 BOOLEAN Binary input 3 Table continues on next page Phasor measurement unit RES670 2.1 ANSI...
  • Page 777: Settings

    Section 21 1MRK 511 365-UUS A IED hardware Name Type Description BOOLEAN Binary input 4 BOOLEAN Binary input 5 BOOLEAN Binary input 6 BOOLEAN Binary input 7 BOOLEAN Binary input 8 BOOLEAN Binary input 9 BI10 BOOLEAN Binary input 10 BI11 BOOLEAN Binary input 11...
  • Page 778: Technical Data

    Section 21 1MRK 511 365-UUS A IED hardware 21.2.7.6 Technical data Table 647: BIM - Binary input module Quantity Rated value Nominal range Binary inputs DC voltage, RL 24/30 V RL ±20% 48/60 V RL ±20% 125 V RL ±20% 220/250 V RL ±20% Power consumption...
  • Page 779: Binary Output Modules (Bom)

    Section 21 1MRK 511 365-UUS A IED hardware Maximum 176 binary input channels may be activated simultaneously with influencing factors within nominal range. 21.2.8 Binary output modules (BOM) 21.2.8.1 Introduction The binary output module has 24 independent output relays and is used for trip output or any signaling purpose.
  • Page 780: Signals

    Section 21 1MRK 511 365-UUS A IED hardware IEC99000505 V3 EN Figure 300: Connection diagram 21.2.8.3 Signals Table 649: BOM Input signals Name Type Default Description BLOCK BOOLEAN Block binary outputs BOOLEAN Binary output 1 BOOLEAN Binary output 2 BOOLEAN Binary output 3 BOOLEAN Binary output 4...
  • Page 781: Settings

    Section 21 1MRK 511 365-UUS A IED hardware Name Type Default Description BO10 BOOLEAN Binary output 10 BO11 BOOLEAN Binary output 11 BO12 BOOLEAN Binary output 12 BO13 BOOLEAN Binary output 13 BO14 BOOLEAN Binary output 14 BO15 BOOLEAN Binary output 15 BO16 BOOLEAN Binary output 16...
  • Page 782 Section 21 1MRK 511 365-UUS A IED hardware Name Type Values (Range) Unit Description BOOLEAN 0=Normal Binary output 1 status 1=Forced 2=Blocked BO2VALUE BOOLEAN Binary output 2 value BO2FORCE BOOLEAN 0=Normal Binary output 2 force 1=Forced BOOLEAN 0=Normal Binary output 2 status 1=Forced 2=Blocked BO3VALUE...
  • Page 783 Section 21 1MRK 511 365-UUS A IED hardware Name Type Values (Range) Unit Description BO8FORCE BOOLEAN 0=Normal Binary output 8 force 1=Forced BOOLEAN 0=Normal Binary output 8 status 1=Forced 2=Blocked BO9VALUE BOOLEAN Binary output 9 value BO9FORCE BOOLEAN 0=Normal Binary output 9 force 1=Forced BOOLEAN 0=Normal...
  • Page 784 Section 21 1MRK 511 365-UUS A IED hardware Name Type Values (Range) Unit Description BO15VALUE BOOLEAN Binary output 15 value BO15FORCE BOOLEAN 0=Normal Binary output 15 force 1=Forced BO15 BOOLEAN 0=Normal Binary output 15 status 1=Forced 2=Blocked BO16VALUE BOOLEAN Binary output 16 value BO16FORCE BOOLEAN 0=Normal...
  • Page 785: Technical Data

    Section 21 1MRK 511 365-UUS A IED hardware Name Type Values (Range) Unit Description BO21 BOOLEAN 0=Normal Binary output 21 status 1=Forced 2=Blocked BO22VALUE BOOLEAN Binary output 22 value BO22FORCE BOOLEAN 0=Normal Binary output 22 force 1=Forced BO22 BOOLEAN 0=Normal Binary output 22 status 1=Forced 2=Blocked...
  • Page 786: Static Binary Output Module (Som)

    Section 21 1MRK 511 365-UUS A IED hardware Maximum 72 outputs may be activated simultaneously with influencing factors within nominal range. After 6 ms an additional 24 outputs may be activated. The activation time for the 96 outputs must not exceed 200 ms. 48 outputs can be activated during 1 s.
  • Page 787: Signals

    Section 21 1MRK 511 365-UUS A IED hardware IEC09000974-1-en.vsd IEC09000974 V1 EN Figure 301: SOM Static output principle 1MRK002802-AB-13-670-1.2-PG-ANSI V1 EN Figure 302: Connection diagram of the static output module 21.2.9.3 Signals Table 654: SOM Input signals Name Type Default Description BLOCK BOOLEAN...
  • Page 788: Settings

    Section 21 1MRK 511 365-UUS A IED hardware Table 655: SOM Output signals Name Type Description STATUS BOOLEAN Static binary output module status 21.2.9.4 Settings Table 656: SOM Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Enabled Operation Disabled/Enabled...
  • Page 789 Section 21 1MRK 511 365-UUS A IED hardware Name Type Values (Range) Unit Description BOOLEAN 0=Normal Binary output 4 status 1=Forced 2=Blocked BO5VALUE BOOLEAN Binary output 5 value BO5FORCE BOOLEAN 0=Normal Binary output 5 force 1=Forced BOOLEAN 0=Normal Binary output 5 status 1=Forced 2=Blocked BO6VALUE...
  • Page 790: Technical Data

    Section 21 1MRK 511 365-UUS A IED hardware Name Type Values (Range) Unit Description BO11FORCE BOOLEAN 0=Normal Binary output 11 force 1=Forced BO11 BOOLEAN 0=Normal Binary output 11 status 1=Forced 2=Blocked BO12VALUE BOOLEAN Binary output 12 value BO12FORCE BOOLEAN 0=Normal Binary output 12 force 1=Forced BO12...
  • Page 791: Binary Input/Output Module (Iom)

    Section 21 1MRK 511 365-UUS A IED hardware Table 659: SOM - Static Output module data (reference standard: IEC 61810-2): Electromechanical relay outputs Function of quantity Trip and signal relays Max system voltage 250V AC/DC Number of outputs Test voltage across open contact, 1 min 1000V rms Current carrying capacity: Continuous...
  • Page 792: Design

    Section 21 1MRK 511 365-UUS A IED hardware 21.2.10.2 Design The binary input/output module is available in two basic versions, one with unprotected contacts and one with MOV (Metal Oxide Varistor) protected contacts. Inputs are designed to allow oxide burn-off from connected contacts, and increase the disturbance immunity during normal protection trip times.
  • Page 793: Signals

    Section 21 1MRK 511 365-UUS A IED hardware 21.2.10.3 Signals Table 660: IOMIN Output signals Name Type Description STATUS BOOLEAN Binary input part of IOM module status BOOLEAN Binary input 1 BOOLEAN Binary input 2 BOOLEAN Binary input 3 BOOLEAN Binary input 4 BOOLEAN Binary input 5...
  • Page 794: Settings

    Section 21 1MRK 511 365-UUS A IED hardware 21.2.10.4 Settings Table 662: IOMIN Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Enabled Binary input/output module in operation (On) or Enabled not (Off) DebounceTime 0.001 - 0.020 0.001 0.001 Debounce time for binary inputs...
  • Page 795 Section 21 1MRK 511 365-UUS A IED hardware Name Type Values (Range) Unit Description BO4FORCE BOOLEAN 0=Normal Binary output 4 force 1=Forced BOOLEAN 0=Normal Binary output 4 status 1=Forced 2=Blocked BO5VALUE BOOLEAN Binary output 5 value BO5FORCE BOOLEAN 0=Normal Binary output 5 force 1=Forced BOOLEAN 0=Normal...
  • Page 796: Technical Data

    Section 21 1MRK 511 365-UUS A IED hardware Name Type Values (Range) Unit Description BO11VALUE BOOLEAN Binary output 11 value BO11FORCE BOOLEAN 0=Normal Binary output 11 force 1=Forced BO11 BOOLEAN 0=Normal Binary output 11 status 1=Forced 2=Blocked BO12VALUE BOOLEAN Binary output 12 value BO12FORCE BOOLEAN 0=Normal...
  • Page 797: Ma Input Module (Mim)

    Section 21 1MRK 511 365-UUS A IED hardware Maximum 72 outputs may be activated simultaneously with influencing factors within nominal range. After 6 ms an additional 24 outputs may be activated. The activation time for the 96 outputs must not exceed 200 ms. 48 outputs can be activated during 1 s.
  • Page 798 Section 21 1MRK 511 365-UUS A IED hardware IEC99000504 V2 EN Figure 304: MIM connection diagram Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 799: Signals

    Section 21 1MRK 511 365-UUS A IED hardware 21.2.11.3 Signals Table 666: MIM Output signals Name Type Description STATUS BOOLEAN Milliampere input module status REAL Analog input 1 REAL Analog input 2 REAL Analog input 3 REAL Analog input 4 REAL Analog input 5 REAL...
  • Page 800 Section 21 1MRK 511 365-UUS A IED hardware Name Values (Range) Unit Step Default Description IMinCh3 -25.00 - 25.00 0.01 4.00 Min current of transducer for Channel 3 IMaxCh3 -25.00 - 25.00 0.01 20.00 Max current of transducer for Channel 3 ValueMinCh3 -10000000000.000 0.001...
  • Page 801: Monitored Data

    Section 21 1MRK 511 365-UUS A IED hardware 21.2.11.5 Monitored data Table 668: MIM Monitored data Name Type Values (Range) Unit Description STATUS BOOLEAN 0=Ok Milliampere input module 1=Error status REAL Analog input 1 REAL Analog input 2 REAL Analog input 3 REAL Analog input 4 REAL...
  • Page 802: Design

    Section 21 1MRK 511 365-UUS A IED hardware of the output. The 4-wire connection has separated signals for RX and TX multidrop communication with a dedicated Master and the rest are slaves. No special control signal is needed in this case. 21.2.12.2 Design The RS485 is a PMC card and it is factory mounted as a mezzanine card on the NUM...
  • Page 803: Technical Data

    Section 21 1MRK 511 365-UUS A IED hardware • Termination (2-wire): Connect pin 1 to pin 3 • Termination (4-wire): Connect pin 1 to pin 3 and pin 4 to pin 6 Soft ground connector pinouts A second 2-pole screw connector is used for the connection of IO-ground. It can be used in two combinations like: •...
  • Page 804: Design

    Section 21 1MRK 511 365-UUS A IED hardware 21.2.13.3 Design The Optical Ethernet module (OEM) is a PMC card and mounted as a mezzanine card on the ADM. The OEM is a 100BASE-FXmodule and available as a single channel or double channel unit.
  • Page 805: Gps Time Synchronization Module (Gtm)

    Section 21 1MRK 511 365-UUS A IED hardware 21.2.14 GPS time synchronization module (GTM) 21.2.14.1 Introduction This module includes a GPS receiver used for time synchronization. The GPS has one SMA contact for connection to an antenna. It also includes an optical PPS ST-connector output.
  • Page 806: Gps Antenna

    Section 21 1MRK 511 365-UUS A IED hardware 21.2.15 GPS antenna 21.2.15.1 Introduction In order to receive GPS signals from the satellites orbiting the earth a GPS antenna with applicable cable must be used. 21.2.15.2 Design The antenna with a console for mounting on a horizontal or vertical flat surface or on an antenna mast.
  • Page 807: Technical Data

    Section 21 1MRK 511 365-UUS A IED hardware Antenna cable Use a 50 ohm coaxial cable with a male TNC connector in the antenna end and a male SMA connector in the receiver end to connect the antenna to GTM. Choose cable type and length so that the total attenuation is max.
  • Page 808: Settings

    Section 21 1MRK 511 365-UUS A IED hardware IEC06000304=1=en=Original.ai IEC06000304 V2 EN Figure 308: IRIG-B PC-MIP board with top left ST connector for optical IRIG-B 00X 820 nm multimode fibre optic signal input and lower left BNC connector for IRIG-B signal input 21.2.16.3 Settings Table 676:...
  • Page 809 Section 21 1MRK 511 365-UUS A IED hardware Quantity Rated value Pulse-width modulated 5 Vpp Amplitude modulated – low level 1-3 Vpp – high level 3 x low level, max 9 Vpp Supported formats IRIG-B 00x, IRIG-B 12x Accuracy +/-10μs for IRIG-B 00x and +/-100μs for IRIG-B 12x Input impedance 100 k ohm Optical connector:...
  • Page 810: Dimensions

    Section 21 1MRK 511 365-UUS A IED hardware 21.3 Dimensions 21.3.1 Case without rear cover IEC08000164-2-en.vsd IEC08000164 V2 EN Figure 309: Case without rear cover Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 811 Section 21 1MRK 511 365-UUS A IED hardware xx08000166.vsd IEC08000166 V1 EN Figure 310: Case without rear cover with 19” rack mounting kit Case size (inches) 6U, 1/2 x 19” 10.47 8.81 7.92 9.96 8.10 7.50 8.02 18.31 7.39 19.00 6U, 3/4 x 19”...
  • Page 812: Case With Rear Cover

    Section 21 1MRK 511 365-UUS A IED hardware 21.3.2 Case with rear cover IEC08000163-2-en.vsd IEC08000163 V2 EN Figure 311: Case with rear cover Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 813 Section 21 1MRK 511 365-UUS A IED hardware xx08000165.vsd IEC08000165 V1 EN Figure 312: Case with rear cover and 19” rack mounting kit IEC05000503-2-en.vsd IEC05000503 V2 EN Figure 313: Rear cover case with details Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 814: Flush Mounting Dimensions

    Section 21 1MRK 511 365-UUS A IED hardware Case size (inches) 6U, 1/2 x 19” 10.47 8.81 9.53 10.07 8.10 7.50 8.02 18.31 9.00 19.00 6U, 3/4 x 19” 10.47 13.23 9.53 10.07 12.52 7.50 12.4 18.31 9.00 19.00 6U, 1/1 x 19” 10.47 17.65 9.53...
  • Page 815: Side-By-Side Flush Mounting Dimensions

    Section 21 1MRK 511 365-UUS A IED hardware Cut-out dimensions (inches) Case size Tolerance +/0.04 +/0.04 6U, 1/2 x 19” 8.27 10.01 0.16–0.39 0.49 6U, 3/4 x 19” 12.69 10.01 0.16–0.39 0.49 6U, 1/1 x 19” 17.11 10.01 0.16–0.39 0.49 E = 7.42”...
  • Page 816 Section 21 1MRK 511 365-UUS A IED hardware xx05000505.vsd IEC05000505 V1 EN Figure 316: Panel-cut out dimensions for side-by-side flush mounting Case size (inches) ±0.04 ±0.04 ±0.04 ±0.04 ±0.04 ±0.04 ±0.04 Tolerance 6U, 1/2 x 19” 8.42 10.21 9.46 7.50 1.35 0.52 0.25 diam...
  • Page 817: Wall Mounting Dimensions

    Section 21 1MRK 511 365-UUS A IED hardware 21.3.5 Wall mounting dimensions IEC04000471-2-en.vsd IEC04000471 V2 EN Figure 317: Wall mounting Case size (inches) 6U, 1/2 x 19” 10.50 10.52 10.74 15.36 9.57 6U, 3/4 x 19” 15.92 14.94 10.74 15.36 9.57 6U, 1/1 x 19”...
  • Page 818: Mounting Procedure For Flush Mounting

    Section 21 1MRK 511 365-UUS A IED hardware Only a single case can be mounted in each cut-out on the cubicle panel, for class IP54 protection. Flush mounting cannot be used for side-by-side mounted IEDs when IP54 class must be fulfilled. Only IP20 class can be obtained when mounting two cases side-by-side in one (1) cut-out.
  • Page 819: Panel Rack Mounting

    Section 21 1MRK 511 365-UUS A IED hardware PosNo Description Quantity Type Sealing strip, used to obtain IP54 class. The sealing strip is factory mounted between the case and front plate. Fastener Groove Screw, self tapping 2.9x9.5 mm Joining point of sealing strip Panel 21.4.2 19”...
  • Page 820: Mounting Procedure For 19" Panel Rack Mounting

    Section 21 1MRK 511 365-UUS A IED hardware 21.4.2.2 Mounting procedure for 19” panel rack mounting IEC08000160-2-en.vsd IEC08000160 V2 EN Figure 319: 19” panel rack mounting details PosNo Description Quantity Type 1a, 1b Mounting angles, can be mounted either to the left or the right side of the case Screw M4x6...
  • Page 821: Wall Mounting

    Section 21 1MRK 511 365-UUS A IED hardware 21.4.3 Wall mounting 21.4.3.1 Overview All case sizes, 1/2 x 19”, 3/4 x 19”,1/1 x 19”, can be wall mounted. It is also possible to mount the IED on a panel or in a cubicle. When mounting the side plates, use screws that follow the recommended dimensions.
  • Page 822: Mounting Procedure For Wall Mounting

    Section 21 1MRK 511 365-UUS A IED hardware 21.4.3.2 Mounting procedure for wall mounting IEC130 00266-1-en.vsd IEC13000266 V1 EN Figure 320: Wall mounting details. PosNo Description Quantity Type Bushing Screw M4x10 Screw M6x12 or corresponding Mounting bar Screw M5x8 Side plate 21.4.3.3 How to reach the rear side of the IED The IED can be equipped with a rear protection cover recommended to be used with this...
  • Page 823: Side-By-Side 19" Rack Mounting

    Section 21 1MRK 511 365-UUS A IED hardware To reach the rear side of the IED, a free space of 3.2 inches is required on the unhinged side. View from above 3.2" (80 mm) ANSI_en06000135.vsd ANSI06000135 V1 EN Figure 321: How to reach the connectors on the rear side of the IED.
  • Page 824: Mounting Procedure For Side-By-Side Rack Mounting

    Section 21 1MRK 511 365-UUS A IED hardware 21.4.4.2 Mounting procedure for side-by-side rack mounting IEC04000456-2-en.vsd IEC04000456 V2 EN Figure 322: Side-by-side rack mounting details. PosNo Description Quantity Type Mounting plate 2, 3 Screw M4x6 Mounting angle 21.4.4.3 IED mounted with a RHGS6 case A 1/2 x 19”...
  • Page 825: Side-By-Side Flush Mounting

    Section 21 1MRK 511 365-UUS A IED hardware IEC06000180-2-en.vsd IEC06000180 V2 EN Figure 323: IED (1/2 x 19”) mounted with a RHGS6 case containing a test switch module equipped with only a test switch and a RX2 terminal base 21.4.5 Side-by-side flush mounting 21.4.5.1 Overview...
  • Page 826: Mounting Procedure For Side-By-Side Flush Mounting

    Section 21 1MRK 511 365-UUS A IED hardware Please contact factory for special add on plates for mounting FT switches on the side (for 1/2 19" case) or bottom of the relay. 21.4.5.2 Mounting procedure for side-by-side flush mounting IEC06000181-2-en.vsd IEC06000181 V2 EN Figure 324: Side-by-side flush mounting details (RHGS6 side-by-side with 1/2 x 19”...
  • Page 827: Electrical Safety

    Section 21 1MRK 511 365-UUS A IED hardware Table 679: Water and dust protection level according to IEC 60529 Front IP40 (IP54 with sealing strip) Sides, top and bottom IP20 Rear side IP20 with screw compression type IP10 with ring lug terminals Table 680: Weight Case size...
  • Page 828: Influencing Factors

    Section 21 1MRK 511 365-UUS A IED hardware Because of limitations of space, when ring lug terminal is ordered for Binary I/O connections, one blank slot is necessary between two adjacent IO cards. Please refer to the ordering particulars for details. 21.5.4 Influencing factors Table 684:...
  • Page 829: Type Tests According To Standard

    Section 21 1MRK 511 365-UUS A IED hardware 21.5.5 Type tests according to standard Table 687: Electromagnetic compatibility Test Type test values Reference standards 1 MHz Oscillatory burst 2.5 kV IEC 60255-26 disturbance 100 kHz slow damped oscillatory 2.5 kV IEC 61000-4-18, Class III wave immunity test Ring wave immunity test, 100 kHz...
  • Page 830 Section 21 1MRK 511 365-UUS A IED hardware Table 689: Environmental tests Test Type test value Reference standard Cold operation test Test Ad for 16 h at -25°C IEC 60068-2-1 Cold storage test Test Ab for 16 h at -40°C IEC 60068-2-1 Dry heat operation test Test Bd for 16 h at +70°C...
  • Page 831: Labels On Ied

    Section 22 1MRK 511 365-UUS A Labels Section 22 Labels 22.1 Labels on IED Front view of IED xx06000574.ep IEC06000574 V1 EN Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 832 Section 22 1MRK 511 365-UUS A Labels Product type, description and serial number Order number, dc supply voltage and rated frequency Optional, customer specific information Manufacturer Transformer input module, rated currents and voltages Transformer designations IEC06000577-CUSTOMER-SPECIFIC V1 EN Ordering and serial number IEC06000576-POS-NO V1 EN Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 833 Section 22 1MRK 511 365-UUS A Labels Rear view of IED en06000573.ep IEC06000573 V1 EN Warning label Caution label Class 1 laser product label IEC06000575 V1 EN Warning label Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 835: Section 23 Connection Diagrams

    The connection diagrams are delivered on the IED Connectivity package DVD as part of the product delivery. The latest versions of the connection diagrams can be downloaded from http://www.abb.com/substationautomation. Connection diagrams for Customized products Connection diagram, 670 series 2.1 1MRK002802-AF Phasor measurement unit RES670 2.1 ANSI...
  • Page 837: Section 24 Inverse Time Characteristics

    Section 24 1MRK 511 365-UUS A Inverse time characteristics Section 24 Inverse time characteristics 24.1 Application In order to assure time selectivity between different overcurrent protections at different points in the network different time delays for the different protections are normally used. The simplest way to do this is to use definite time-lag.
  • Page 838 Section 24 1MRK 511 365-UUS A Inverse time characteristics Time Fault point position en05000131.vsd IEC05000131 V1 EN Figure 327: Inverse time overcurrent characteristics with inst. function The inverse time characteristic makes it possible to minimize the fault clearance time and still assure the selectivity between protections.
  • Page 839 Section 24 1MRK 511 365-UUS A Inverse time characteristics Feeder Time axis en05000132_ansi.vsd ANSI05000132 V1 EN Figure 328: Selectivity steps for a fault on feeder B1 where: is The fault occurs is Protection B1 trips is Breaker at B1 opens is Protection A1 resets In the case protection B1 shall trip without any intentional delay (instantaneous).
  • Page 840: Principle Of Operation

    Section 24 1MRK 511 365-UUS A Inverse time characteristics • If there is a risk of intermittent faults. If the current IED, close to the faults, picks up and resets there is a risk of unselective trip from other protections in the system. •...
  • Page 841 Section 24 1MRK 511 365-UUS A Inverse time characteristics æ ö ç ÷ ç ÷ × ç ÷ æ ö ç ÷ ç ÷ ç ÷ è ø è ø Pickupn (Equation 84) EQUATION1640 V1 EN where: p, A, B, C are constants defined for each curve type, Pickupn is the set pickup current for step n,...
  • Page 842 Section 24 1MRK 511 365-UUS A Inverse time characteristics æ ö æ ö å ç ÷ D × ³ × ç ÷ A td ç ÷ è ø Pickupn è ø (Equation 87) EQUATION1644 V1 EN where: j = 1 is the first protection execution cycle when a fault has been detected, that is, when >...
  • Page 843 Section 24 1MRK 511 365-UUS A Inverse time characteristics Operate time tMin Current IMin IEC05000133-3-en.vsd IEC05000133 V2 EN Figure 329: Minimum time-lag operation for the IEC curves In order to fully comply with IEC curves definition setting parameter tMin shall be set to the value which is equal to the operating time of the selected IEC inverse time curve for measured current of twenty times the set current pickup value.
  • Page 844 Section 24 1MRK 511 365-UUS A Inverse time characteristics The RD inverse curve gives a logarithmic delay, as used in the Combiflex protection RXIDG. The curve enables a high degree of selectivity required for sensitive residual ground-fault current protection, with ability to detect high-resistive ground faults. The curve is described by equation 90: æ...
  • Page 845 Section 24 1MRK 511 365-UUS A Inverse time characteristics æ ö ç ÷ ç ÷ × ç ÷ æ ö ç ç ÷ ÷ è è ø ø pickupn (Equation 92) ANSIEQUATION1197 V1 EN where: The set value t is the reset time in case of zero current after fault clearance. The possibility of choice of reset characteristics is to some extent dependent of the choice of time delay characteristic.
  • Page 846: Inverse Characteristics

    Section 24 1MRK 511 365-UUS A Inverse time characteristics 24.3 Inverse characteristics Table 692: ANSI Inverse time characteristics Function Range or value Accuracy Operating characteristic: 0.10 ≤ td ≤ 3.00 ANSI/IEEE C37.112 , 1.5 x I ≤ I ≤ 20 x I ±2.0% or ±40 ms whichever is greater æ...
  • Page 847 Section 24 1MRK 511 365-UUS A Inverse time characteristics Table 693: IEC Inverse time characteristics Function Range or value Accuracy Operating characteristic: 0.10 ≤ td ≤ 3.00 IEC 60255-151, ±2.0% 1.5 x I ≤ I ≤ 20 x I or ±40 ms whichever is greater æ...
  • Page 848 Section 24 1MRK 511 365-UUS A Inverse time characteristics Table 695: ANSI Inverse time characteristics for Line Differential Protection Function Range or value Accuracy Operating characteristic: td = (0.05-2.00) in steps of 0.01 ANSI/IEEE C37.112 , ± 5.0% or ± 40 ms whichever is greater æ...
  • Page 849 Section 24 1MRK 511 365-UUS A Inverse time characteristics Table 696: IEC Inverse time characteristics for Line Differential protection Function Range or value Accuracy Operating characteristic: td = (0.05-2.00) in steps of 0.01 IEC 60255-151, ± 5.0% or ± 40 ms whichever is greater æ...
  • Page 850 Section 24 1MRK 511 365-UUS A Inverse time characteristics Table 697: RI and RD type inverse time characteristics for Line Differential protection Function Range or value Accuracy RI type inverse characteristic td = (0.05-2.00) in steps of 0.01 IEC 60255-151, ± 5.0% or ±...
  • Page 851 Section 24 1MRK 511 365-UUS A Inverse time characteristics Table 699: IEC Inverse time characteristics for Sensitive directional residual overcurrent and power protection Function Range or value Accuracy Operating characteristic: 0.10 ≤ k ≤ 2.00 IEC 60255-151, ±5.0% 1.5 x I ≤...
  • Page 852 Section 24 1MRK 511 365-UUS A Inverse time characteristics Table 700: RI and RD type inverse time characteristics for Sensitive directional residual overcurrent and power protection Function Range or value Accuracy RI type inverse characteristic 0.10 ≤ k ≤ 2.00 IEC 60255-151, ±5.0% 1.5 x I ≤...
  • Page 853 Section 24 1MRK 511 365-UUS A Inverse time characteristics Table 702: IEC Inverse time characteristics for Voltage restrained time overcurrent protection Function Range or value Accuracy Operating characteristic: td = (0.05-2.00) in steps of 0.01 IEC 60255-151, ±5.0% or ±40 ms whichever is greater æ...
  • Page 854 Section 24 1MRK 511 365-UUS A Inverse time characteristics Table 703: Inverse time characteristics for overvoltage protection Function Range or value Accuracy Type A curve: td = (0.05-1.10) in steps of ±5.0% or ±45 ms 0.01 whichever is greater æ ö...
  • Page 855 Section 24 1MRK 511 365-UUS A Inverse time characteristics Table 704: Inverse time characteristics for undervoltage protection Function Range or value Accuracy Type A curve: td = (0.05-1.10) in steps of ±5.0% or ±45 ms 0.01 whichever is greater æ ö...
  • Page 856 Section 24 1MRK 511 365-UUS A Inverse time characteristics A070750 V2 EN Figure 330: ANSI Extremely inverse time characteristics Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 857 Section 24 1MRK 511 365-UUS A Inverse time characteristics A070751 V2 EN Figure 331: ANSI Very inverse time characteristics Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 858 Section 24 1MRK 511 365-UUS A Inverse time characteristics A070752 V2 EN Figure 332: ANSI Normal inverse time characteristics Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 859 Section 24 1MRK 511 365-UUS A Inverse time characteristics A070753 V2 EN Figure 333: ANSI Moderately inverse time characteristics Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 860 Section 24 1MRK 511 365-UUS A Inverse time characteristics A070817 V2 EN Figure 334: ANSI Long time extremely inverse time characteristics Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 861 Section 24 1MRK 511 365-UUS A Inverse time characteristics A070818 V2 EN Figure 335: ANSI Long time very inverse time characteristics Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 862 Section 24 1MRK 511 365-UUS A Inverse time characteristics A070819 V2 EN Figure 336: ANSI Long time inverse time characteristics Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 863 Section 24 1MRK 511 365-UUS A Inverse time characteristics A070820 V2 EN Figure 337: IEC Normal inverse time characteristics Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 864 Section 24 1MRK 511 365-UUS A Inverse time characteristics A070821 V2 EN Figure 338: IEC Very inverse time characteristics Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 865 Section 24 1MRK 511 365-UUS A Inverse time characteristics A070822 V2 EN Figure 339: IEC Inverse time characteristics Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 866 Section 24 1MRK 511 365-UUS A Inverse time characteristics A070823 V2 EN Figure 340: IEC Extremely inverse time characteristics Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 867 Section 24 1MRK 511 365-UUS A Inverse time characteristics A070824 V2 EN Figure 341: IEC Short time inverse time characteristics Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 868 Section 24 1MRK 511 365-UUS A Inverse time characteristics A070825 V2 EN Figure 342: IEC Long time inverse time characteristics Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 869 Section 24 1MRK 511 365-UUS A Inverse time characteristics A070826 V2 EN Figure 343: RI-type inverse time characteristics Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 870 Section 24 1MRK 511 365-UUS A Inverse time characteristics A070827 V2 EN Figure 344: RD-type inverse time characteristics Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 871 Section 24 1MRK 511 365-UUS A Inverse time characteristics GUID-ACF4044C-052E-4CBD-8247-C6ABE3796FA6 V1 EN Figure 345: Inverse curve A characteristic of overvoltage protection Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 872 Section 24 1MRK 511 365-UUS A Inverse time characteristics GUID-F5E0E1C2-48C8-4DC7-A84B-174544C09142 V1 EN Figure 346: Inverse curve B characteristic of overvoltage protection Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 873 Section 24 1MRK 511 365-UUS A Inverse time characteristics GUID-A9898DB7-90A3-47F2-AEF9-45FF148CB679 V1 EN Figure 347: Inverse curve C characteristic of overvoltage protection Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 874 Section 24 1MRK 511 365-UUS A Inverse time characteristics GUID-35F40C3B-B483-40E6-9767-69C1536E3CBC V1 EN Figure 348: Inverse curve A characteristic of undervoltage protection Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 875 Section 24 1MRK 511 365-UUS A Inverse time characteristics GUID-B55D0F5F-9265-4D9A-A7C0-E274AA3A6BB1 V1 EN Figure 349: Inverse curve B characteristic of undervoltage protection Phasor measurement unit RES670 2.1 ANSI Technical manual...
  • Page 877: Section 25 Glossary

    Section 25 1MRK 511 365-UUS A Glossary Section 25 Glossary 25.1 Glossary Alternating current Actual channel Application configuration tool within PCM600 A/D converter Analog-to-digital converter ADBS Amplitude deadband supervision Analog digital conversion module, with time synchronization Analog input ANSI American National Standards Institute Autoreclosing ASCT Auxiliary summation current transformer...
  • Page 878 Section 25 1MRK 511 365-UUS A Glossary C37.94 IEEE/ANSI protocol used when sending binary signals between IEDs Controller Area Network. ISO standard (ISO 11898) for serial communication Circuit breaker Combined backplane module CCITT Consultative Committee for International Telegraph and Telephony. A United Nations-sponsored standards body within the International Telecommunications Union.
  • Page 879 Section 25 1MRK 511 365-UUS A Glossary DARPA Defense Advanced Research Projects Agency (The US developer of the TCP/IP protocol etc.) DBDL Dead bus dead line DBLL Dead bus live line Direct current Data flow control Discrete Fourier transform DHCP Dynamic Host Configuration Protocol DIP-switch Small switch mounted on a printed circuit board...
  • Page 880 Section 25 1MRK 511 365-UUS A Glossary FOX 6Plus Compact time-division multiplexer for the transmission of up to seven duplex channels of digital data over optical fibers File Transfer Protocol Function type G.703 Electrical and functional description for digital lines used by local telephone companies.
  • Page 881 Section 25 1MRK 511 365-UUS A Glossary IEEE P1386.1 PCI Mezzanine Card (PMC) standard for local bus modules. References the CMC (IEEE P1386, also known as Common Mezzanine Card) standard for the mechanics and the PCI specifications from the PCI SIG (Special Interest Group) for the electrical EMF (Electromotive force).
  • Page 882 Section 25 1MRK 511 365-UUS A Glossary LDCM Line differential communication module Local detection device Light-emitting diode LON network tool Local operating network Miniature circuit breaker Mezzanine carrier module Milli-ampere module Main processing module MVAL Value of measurement Multifunction vehicle bus. Standardized serial bus originally developed for use in trains.
  • Page 883 Section 25 1MRK 511 365-UUS A Glossary POTT Permissive overreach transfer trip Process bus Bus or LAN used at the process level, that is, in near proximity to the measured and/or controlled components Power supply module Parameter setting tool within PCM600 PT ratio Potential transformer or voltage transformer ratio PUTT...
  • Page 884 Section 25 1MRK 511 365-UUS A Glossary instead synchronize with a remote clock, providing the required accuracy. Status of fault Strömberg Protection Acquisition (SPA), a serial master/slave protocol for point-to-point and ring communication. Switch for CB ready condition Switch or push button to trip Starpoint Neutral/Wye point of transformer or generator Static VAr compensation...
  • Page 885 Section 25 1MRK 511 365-UUS A Glossary set reach. The relay does not “see” the fault but perhaps it should have seen it. See also Overreach. Coordinated Universal Time. A coordinated time scale, maintained by the Bureau International des Poids et Mesures (BIPM), which forms the basis of a coordinated dissemination of standard frequencies and time signals.
  • Page 888 Any reproduction, Phone +46 (0) 21 32 50 00 disclosure to third parties or utilization of its contents – in whole or in part – is forbidden without prior written consent of ABB AB. www.abb.com/substationautomation © Copyright 2016 ABB.

Table of Contents